Public Spaces as Promoters of Equity and Social Inclusion: Case Study of Libraries and Cultural Festivals

As cities grow and densify, access to well-designed pleasant public spaces has not only become an important asset but a challenge for the poor, minorities and vulnerable groups. These groups include urban residents lacking quality and comfort in their housing, and therefore in need of decent infrastructure and communal spaces for health, recreation and socialization (Garau, 2015). Socially excluded category often include, poor, migrants, refugees, transgenders, elders, etc. In this context, social equity refers to provision of generous and good quality public spaces in order to make it accessible to people of all socio-economic backgrounds regardless of their class, age, gender, race or ethnic differences. Public spaces act as promoters of equity and social inclusion by making space for people from all social classes to interact and thereby reducing the economic and social segregation prevalent in a society (UCLG, 2016). Informal economy nurture in these places and should be dealt carefully to provide space for entrepreneurship (UNESCO, 2017).

While planning for inclusive cities, adequate housing, well-connected public transport and accessible public spaces should be integrated. It is essential to focus on (UCLG, 2016):

  • Rebuilding districts in an integrated way
  • Providing disadvantaged urban areas with quality public spaces
  • Promoting mixed use land use
  • Encouraging social mixing in housing
  • Removing architectural barriers that isolate certain areas

In this article, we look into role of libraries and cultural festivals in promoting equity and social inclusion in public spaces through a few case examples.

Libraries as inclusive public spaces

Public libraries are traditionally regarded as information and resources centres. Since information is widely accessible online today, the traditional role of libraries has now changed to play an important role as community spaces (Tan, 2017). They are meant as a pivot for information, learning and cultural discourse (Civica, 2016). As show in the following figure, users perceive libraries as the heart of the community and a place to connect with people (Civica, 2016).

Figure 1: Role of public libraries in users’ perception. Source: ‘The value of libraries as public spaces’ – Civica[1]

Having a vast amount of users, libraries act as socially inclusive public spaces by engaging all excluded groups to the community. Importance of provision of public libraries is identified by many local governments as an inclusive planning strategy to revitalise and transform communities (Hin Man, 2007).

Case 1: Biblioteca Espana, Medellın, Colombia

Medellin, the capital of Antioquia province, Columbia, is often described as a violent city owing to the series of political and drug related events happened over the last two decades. It is home to many Columbians internally displaced by political violence who are socially excluded in terms of access to basic civic amenities and public spaces (Holmes and Pineres, 2013). Despite the city’s history of conflicts, Medellin also has been recognised for its proactive efforts to use public spaces as a tool for quality of life improvement (Sertich, 2010).

Image 1: View of Biblioteca Espana with the settlements in background. Source:

Image 2: Front view of Biblioteca Espana. Source:

Biblioteca Espana (Spain Library Park) was a part of the mayor’s social inclusion program that targeted two of the poorest and most isolated neighbourhoods of the city – ‘Popular’ and ‘Santa Cruz’. Both the neighbourhoods are densely populated with low standard of living. Statistics shows that (Municipio de Medellín 2010; Municipio de Medellín 2010a),

  • Quality of housing:  99.8 % of Popular and 99.9% of Santa Cruz are classified as low/ very low/ slum
  • Education: 61.1 % of Popular and 56.6% of Santa Cruz have primary or lower level of education attainment
  • Unemployment rate is 40% and average monthly income is 147,000 pesos (US$70) in both the neighbourhoods,

Bogotá architect Giancarlo Mazzanti designed the Biblioteca España complex with three goals in mind (Holmes and Pineres, 2013),

  • promote the creation of employment and economic prosperity
  • promote social integration and the revitalization of depressed urban areas
  • protect and improve the urban environment

The complex provides broader infrastructure improvements, such as a community center, an auditorium, art galleries, play areas, computer labs, and outside space. All are designed to improve the economic prospects of nearby residents, increase their integration to the city at large, and promote social capital. Residents gather in this oasis for readings, screenings, concerts and discussions (Tan, 2017). As per a survey conducted in 2011, the project had greater impacts on residents’ satisfaction on quality of life (figure 2)  (Holmes and Pineres, 2013).

Figure 2: Medellín Cómo Vamos QOL survey results for Popular/ Santa Cruz. Source: Medellín’s Biblioteca España: Progress in Unlikely Places

Case 2: The Idea Store, Tower Hamlets Borough, London, UK

Tower Hamlets is one of London’s most diverse boroughs with more than 37% of the population being British Bengalis facing high levels of unemployment and social exclusion. The library system in the city had potential to provide its residents with learning opportunities to improve work and career outlooks, a meeting place to encourage social cohesion and connection, and support for families and young people (Aitani, 2017). Acknowledging this fact, Tower Hamlets Council’s Arts, Leisure and Sports Committee undertook renovation on the existing library system after an extensive public consultation in 2002 (, 2015). As a result, the ‘Idea Store’ was conceptualised as a new form of public library to incorporate the needs of customers and making it an attractive, accessible public space. Idea Stores provide core services of a library and functions as (, 2015),

  • Clubs for homework, jobs, and books
  • Skill development centre
  • Children’s Centres which offer programs and support for families
  • Centre for cultural events and performances
  • Community meeting spaces

Image 3: The Idea Store, London. Source:

By 2009, the Tower Hamlets library system was ranked 3rd in London and 4th in England for percentage of residents using library services, based on the participation data for National Indicator 9 (Aitani, 2017The 2006/07 Public Library User Survey (PLUS) of users over the age of 16 demonstrated that Tower Hamlets Idea Store attracted  users of all ages from different background. 54.8% of the total users were from ethnic minorities and 32.9% from the age group of 20 to 24 (Tower Hamlets Council, 2009).

Social inclusion through cultural festivals in public spaces

Cultural festivals are public celebrations which demonstrate community values, strengthen community pride and sense of place (Jepson, Wiltshier and Clarke, 2012). They act as a medium of combining groups of people and communities together to produce meaningful insights, foster peace and create safer and friendlier neighbourhoods (Stern and Seifert, 2010).   When public spaces such as streets, plazas, convention centers, open grounds, etc. are used for festivals, it promotes equity and social inclusion in the city (Clover, 2006).

Case 1: Festivals in South Bank Parklands and Neighbourhood parks of Brisbane, Queensland

The indigenous Australians known as Aboriginals and Torres Strait islanders account for 2.4% of the population of Brisbane, the capital city of Queensland. Refugees or asylum seekers from the Middle East and parts of Asia also contribute to a portion of Brisbane’s population (ABS, 2016). In a homogeneous demography, these two groups are constantly facing a threat of social exclusion. However, several initiatives have been taken by NGOs and local volunteers to establish their participation in public life through various programs and cultural festivals (Roitman and Johnson, 2014).

Image 4: The public park in the South Bank Parklands. Source:

Image 5: A performance by tribal community in the Clancestry festival. Source:

Image 6: A procession from the Luminous festival. Source:

South Bank Parklands, a 17 hectare riverfront public space with artificial beach and parks, is used as the venue for two important festivals namely Clancestry and Luminous festival. These festivals by the indigenous and the refugee communities are an attempt to establish their right to the city and its spaces. They enable them to interact with non-aboriginals through cultural and artistic expression in a shared public space (Roitman and Johnson, 2014).

The suburban neighbourhood parks of Brisbane also hold several cultural events and festivals such as,

  • Indigenous hip-hop
  • Styling up
  • Vietnamese moon festival
  • Chinese New Year
  • African day
  • World Refugee football tournament
  • Rohingya youth day, etc.,

thereby promoting equity and social inclusion in the public spaces of the city (Roitman and Johnson, 2014).

Case 2: Slum festival in Kampala, Uganda

Slums are typically characterised by overcrowding, high levels of unemployment or underemployment, deficient urban services (water, sanitation, education, and health) and widespread insecurity (UN-Habitat, 2003). Kampala, Uganda’s capital city has half of its population living in slums and socially excluded from the society. The Slum festival is conducted in 2014 with an aim to activate public space in the Kampala slum through artistic interventions, construction of stages, the use of performance and new media, and audience participation. Artists, audiences, residents, local initiatives and organisations are mobilized to participate in the shaping of their public space and to make it a reflection of their identity.  This initiative enable slum dwellers for better public interaction and social engagement as well as empowering the economically disadvantaged to develop within the creative economy (Lubega et al., 2014).

Image 7: A performance from the Slum Festival in 2015. Source:


The case of Spain Library Park in Medellin shows that libraries can be a place of revival for socially excluded low income groups in a society. In London’s Idea Stores, a library system served a multitude of opportunities for the public such as meeting place, space for cultural expression, etc. and increased participation of people from multiple ethnic background and age groups. Similarly, cultural festivals in the public spaces of Brisbane and Kampala helped integrate migrants, indigenous people or slum dwellers to the public realm, thereby promoting social inclusion.

Since public spaces are particularly important for marginalised groups, planning for quality public spaces to foster integration between different socio-economic groups becomes relevant. Investments in streets and public space infrastructure improve urban productivity, livelihoods and allow better access to markets, jobs and public services, especially in developing countries where a large proportion of the urban workforce is informal. Public spaces can thus be a powerful tool to improve equity, promote inclusion and combat discrimination. However, engaging the community in design, management and maintenance of public spaces is also relevant to attain an inclusive city.

[1] Survey results from the research conducted by Civica group ltd. and University of Technology, Sydney, on the value of libraries as public spaces

Read More

Designing Gender Sensitive Public Spaces

Case Study of Public Spaces in Vienna


Gender equality is not only a fundamental human right, but a necessary foundation for a prosperous and sustainable world (United Nations, 2018). UN Women defines gender equality as equal rights, responsibilities and opportunities for women and men (UN WOMEN, 2018). Providing equal access to education, public spaces, health care, decent work, and representation in decision-making processes ensures sustainable development (United Nations, 2018).

Gender-based violence in urban areas can be attributed to factors such as poverty, discrimination, exclusion and lack of gender mainstreaming in urban development leading to public spaces and structures not catering to all genders equally (Jagori, 2015).

Perceptions of gender equality differ between men and women, societies and countries of different developmental status. Globally, many countries have achieved important milestones towards gender parity, however developing countries like India still face women safety as the basic issue in gender equality. We have previously looked into gender mainstreaming in housing sector and women safety audits in India. This article talks about the importance of gender equality in planning and design of public spaces. The article focuses on case studies from Vienna describing the implementation of gender sensitive practises in their public spaces.

Gender equality in public spaces

Public spaces enable women, girls, elderly and other marginalised groups (transgenders, migrants, etc.) to participate in public life (UCLG, 2016). Though they are meant for everyone to use regardless of their gender or age, women use public parks and streets lesser than men (Harth, 2018). In India it is noticed that women tend to limit their participation in public sphere to day time in markets or parks in urban areas (Shukla, 2017). Reported cases of physical and psychological harassment in parks, streets and public transports have raised the levels of fear or vulnerability among them (Phadke, 2012). Studies show that women prefer active public spaces with characteristics of safer perimeter, cleanliness and safety (Gholamhosseini et al., 2018). They perceive lack of proper lighting, deserted roads, absence of street vendors and stores as unsafe situations. Public spaces that ensures comfort, accessibility and safety through features like clean toilets, proper lighting, etc. are preferred by women, elders and children (PUKAR, 2011).

Gender equality in public spaces can be achieved by accommodating features that improve women’s safety (UNIFEM, 2010). Planning and designing should put special focus on (UCLG, 2016; UNIFEM, 2010):

  • Proper lighting
  • Landscaping
  • Visibility
  • Clean toilets
  • Motorized and Pedestrian traffic
  • Signages
  • Security personnel
  • Proximity to other public spaces and emergency services
  • Access to public transportation
  • Mixed-land use
  • Women’s participation in decision making

Case study – Gender Equality in Public Spaces of Vienna

Vienna, the capital city of Austria functions as its economic, cultural and political centre. It has been focusing on gender mainstreaming while designing its public spaces, housing, mobility and infrastructure since 1990. The gender mainstreaming concept is being incorporated mainly in the design of streetscapes, public squares and public parks (Damyanovic, Reinwald and Weikmann, 2013).

Gender-sensitive public parks design: re-design of Einsiedler Park and St. Johann Park

A need to redesign Einsiedler Park and St. Johann Park was perceived by the City of Vienna when girls aged between 10 and 12 were found using parks lesser. By focusing on their interests, gender sensitive solutions were implemented to make them feel safer and better in these spaces (UCLG, 2016). The main objectives of the project were to (, 2018):

  • motivate girls and young women to use the parks more often
  • improve safety perception in the parks
  • improve elements to attract elderly and parents with little children, and
  • have intense professional exchange of ideas during the planning phase.

The city of Vienna selected the design proposals of Tilia planning office and Koselika planning office for Einsiedler Park and St. Johann Park respectively through a design challenge. By 2001, detailed planning for re-structuring and re-designing the parks was done and renovation works were completed (, 2018).

Image 1: Paved path, clear visibility and seating in Einsiedler Park. Source:

Image 2: Platforms to sit and chat in St. Johann Park, Source:

Gender-sensitive planning measures

The participating consultancies conducted meetings and workshops with residents, mothers, representatives of schools and kindergartens in the district, etc. to identify joint goals for the project. They paid attention to girls’ interests specifically to develop strategies for encouraging their involvement in public activities (, 2018). Several gender–sensitive design elements were introduced in these parks, such as (Harth, 2018):

  • Football cages were converted for activities that accommodates both genders; in this case, badminton and volleyball courts
  • Hollows in the meadowland were converted to be used as arenas, for ball-games, gymnastics and sitting together
  • Multifunctional play areas
  • Efficient lighting was provided on the main paths
  • Park keepers ensured that the rules are followed
  • Good visibility and clear-cut organisation of footpaths
  • Well-maintained public toilets

Image 3: Hammocks, quick attraction elements at Einsiedler Park, Source: WPS

Image 4: Platform at Einsiedler Park, Source: WPS


The projects witnessed considerable physical and social impacts over time. Physical transformations such as open common areas, gender-neutral activity field, places for group chatting, etc. motivated women and girls to spend more time in the park. Features like visibility in main avenues and proper lighting improved the safety aspects also (, 2018). Noticeable presence of women of all age groups was found in St. Johann’s park (Harth, 2018).

Looking at the response, City of Vienna implemented pilot projects of gender sensitive re-design in other parks of the city. On similar concepts, gender sensitive design elements such as structured footpath network, efficient illumination, multifunctional plazas, multifunctional lawns, etc. were incorporated in Rudolph-Bednar Park (Damyanovic, Reinwald and Weikmann, 2013).

Gender-sensitive public square design: redesign of Christian Broda Platz

Public squares are another focus area for gender mainstreaming in the planning of public spaces in Vienna (Chalaby, 2017). On submitting the winning entry for a gender-sensitive architectural competition, architects Beitl and Wallmann redesigned the Christian-Broda-Platz in the 6th district of Vienna. The team designed the square by paying attention to direct walking routes, playing equipment, barrier free toilets, drinking fountains, etc. The pilot project resulted in a generous use of the public square by all genders among youth, children and senior citizens (Damyanovic, Reinwald and Weikmann, 2013). Similar measures were adopted in Liesinger Platz of the 23rd district also to achieve a gender-sensitive design.

Image 5: Seating arrangements in Chrisian Broda Platz, Source:

In addition to these projects, gender mainstreaming is also incorporated in designing walkways. A survey conducted by City of Vienna in 1992 identified that females use public transit and pedestrian paths more than males. As a result, city planners adopted steps to improve pedestrian mobility and access to public transit (Foran, 2013). This includes 26 street lighting projects, widening of sidewalks and barrier free designs by the City of Vienna Women’s Office (Chalaby, 2017).


Over the years, re-designing several parks and public squares in Vienna has resulted in an inclusive city planning model. Certain design elements such as multifunctional play areas, raised platforms to sit and chat, etc. are easily transferable and can be installed in other places. Assuring safety through efficient lighting and multiple activities in any public space is an important factor in gender-sensitive planning. From the cases of gender mainstreaming in public spaces explained here, it is evident that through effective planning measures, public spaces can have equal utility and benefits for everyone.

In India’s diverse social setting, women’s safety and factors for comfort are often neglected while designing public spaces like parks, streets, markets, public transit, institutions, etc. However, several positive initiatives to improve the safety of public spaces are being taken by many Indian cities. Apps such as SafetiPin are useful for women safety audits. The data acquired is used by the police and PWD to augment facilities such as lighting in public spaces. Government missions like JNNURM seeks to promote planned urban development and equitable cities as an opportunity to build gender-fair and inclusive cities (Khosla, 2009). In patriarchal economies like India where women’s interests are conventionally under-represented, there is still a lot to achieve.

Read More

Marketing the Public Bus: Case Study of LA Metro’s Orange Line

A shift towards public transportation is pivotal in dealing with issues such as traffic congestion and poor air quality. Although, one of the reasons for commuters to not shift to public transit is due to the highly competitive marketplace alongside private automobile companies. Private automobile companies invest billions of dollars every year to (Carrigan, Arpi & Weber, 2011):

  • Maintain their image,
  • Cultivate customer’s mind-set,
  • and, push their products into the market by creating demand

In the year 2009 alone, major automobile companies spent over US$ 21 billion globally on advertisements (Advertising Age Group, 2010). Such intensive marketing from the private sector highlights the need for public bus corporations to engage in cost-effective marketing campaigns to increase their ridership.

Public bus corporations can use various marketing strategies to (EMBARQ India, 2014):

  • Attract new riders
  • Retain existing riders
  • Improve public and political support
  • Educate and inform users about the facilities, and
  • Manage the public narrative through communication

When combined with a good service, branding and marketing encourages people to use the public bus network and thereby reduces the reliance on private vehicles. In this article, the case study of the Orange Line in Los Angeles Metro focuses on their branding, marketing campaigns and user education activities. Few other examples highlight similar aspects of marketing the public transit.

Metro’s Orange Line BRTS in Los Angeles, California

The Orange Line, a Bus Rapid Transit System (BRTS) started its service in 2005 in the San Fernando Valley area, as a part of the Los Angeles Metro. It is 29 kilometres long, has dedicated bus lanes and exclusive right-of-way. Metro (also the name of the operating agency) took many public outreach and engagement initiatives to disseminate the benefits of the public transportation and encouraged the commuters to make a shift. Following are some of the strategies:


The brand of the Orange Line is incorporated into the system in numerous ways. The Orange Line is designed to be a part of the Metro’s vast rail network and provides equivalent quality of service. Similarly, it is marketed as part of the Metro and not as a separate entity. This idea is conveyed by keeping the Orange Line brand consistent with the familiar Metro’s colour code instead of typical numbers for bus routes (Figure 1). The colour scheme is carried over and incorporated into multiple components of the service, such as vehicles, bus stations, signs, maps, seating, etc. (Carrigan, Arpi & Weber, 2011).

Figure 1: BRTS as a part of the Los Angeles Metro map (Source: Los Angeles County Metropolitan Transportation Authority)


Figure 2: Brand promotion. (Source: Flynn, Thole, Perk, Samus & Van Nostrand, 2011)

  Marketing Campaigns

During the construction of Orange Line, the management regularly posted construction updates and other information through regional newspapers, the acoustic barriers of their construction site, town hall meetings, fliers, etc. In a pre-launch survey, it was found that people were confused if the Orange line was a bus or a train service. Through “It’s…” promotional campaign, the management answered the questions raised by the people and highlighted the various advantages of the new line (Carrigan, Arpi & Weber, 2011).

Image 3: Metro Orange Line “It’s…” campaign (Source: Flynn, Thole, Perk, Samus & Van Nostrand, 2011)

In 2008, to increase sales tax by half-cent to fund transit projects, the Measure-R bill was up for a public ballot vote. The LA Metro ran the “Opposites” campaign just before the bill to:

  • Dissuade people from using private vehicles
  • Promote the use of the Metro, and
  • Increase awareness about the Metro services

Figure 4: LA Metro’s Opposites Campaign (Source: SEGD)

Comparing the contrasting ideas for public and private transportation, this campaign communicated that Metro was the solution to LA’s problems such as traffic congestion, air pollution and fuel usage (Lejeune, 2013).

The campaign, passed through public approval, helped in securing funding of over $40 billion over 30 years for major transit and highway projects. The discretionary ridership of those who have a car but still use the public transit, also increased from 24% to 36%. Metro’s “unfavorable” ratings dropped from 27 percent to 12 percent and “strongly favorable” ratings increased by 17 percent. Public awareness of the Metro is now at 95 percent (Lejeune, 2013).

  User Education  

User education is an essential aspect of launching and promoting the public transit. Free rides, study tours and safety instructions are some ways to engage the community and acclimatize them to the transit system. During the launch of the Orange Line, the Metro provided free rides on the opening weekend of operations to familiarize the public with the BRTS service and eliminate any uncertainties that existed before. Also, the BRTS vehicles were showcased in 2005 RideFest to promote the use of public transits and congestion management practices. As part of their safety program, Metro made an interactive presentation to about 30,000 residents living nearby and about 100 schools within a 1.5-mile radius of the Orange Line busway (Flynn, Thole, Perk, Samus & Van Nostrand, 2011).

Apart from communicating with the public through press releases, user information systems and marketing campaigns, LA Metro has provisions for bi-lateral communication to hear from the customers. They are very responsive to user feedback systems. The Metro Customer Centre was made more welcoming and cheerful to encourage the use of the facility (Carrigan, Arpi & Weber, 2011).

Other Examples

  Metrobus, Mexico City

In Mexico City, Collectivo drivers often behaved and dressed unprofessionally. The new Metrobus BRTS gave importance to the appearance of its drivers, as they are a reflection of the brand and the image of the whole transit system. Metrobus continues to trains its employees to create a welcoming and passenger-friendly service (Carrigan, Arpi & Weber, 2011).

Image 5: Left: LA Metro Orange Line bus driver as an ambassador

Image 6: Right: Collectivo drivers versus Metrobus drivers in Mexico City

Source: Carrigan, Arpi and Weber, 2011

  Janmarg, Ahmedabad

In Ahmedabad, to acclimatise the public with BRTS, the agency built a prototype of the BRTS station one year before Janmarg became operational. The prototype showcased the station designs and educated people on how to use the facilities. This user education policy also provided an opportunity to gather feedback from the public and make necessary design changes before starting the operations. Janmarg also offered free rides to the public for the first 100 days of operations (Carrigan, Arpi & Weber, 2011).


From the Los Angeles case study, through many interventions LA Metro built a strong brand image. Building up a strong brand image is important to communicate the core values of an organisation, inform the people about the services and encourage them to use it often. Marketing strategies can help transit organizations reach their organizational target of increased public awareness, increased use of services and other specific goals. They can be cost-effectively utilized by the public transit organization. However, marketing campaigns should only promote services that already exist, and the transit corporations must be prepared to handle the generated demand.

Read More

Social Equity in Accessing Public Transportation: Case Study of Job Access and Reverse Commute (JARC), USA


Transportation planning has always focused on urban mobility, reducing traffic congestion in cities and providing access to major locations (Manaugh, 2014). However, often ignored is the social equity in access to public transportation. With route planning focused on demand forecasting, low-income neighbourhoods and other vulnerable population are often neglected due to budget constraints (Transport for America, 2018). These vulnerable communities rely mostly on public transportation.

In the realm of transportation, social equity refers to providing affordable and equitable access to public transport. The vulnerable population here includes children, students, elderly, handicapped and low-income individuals. Social equity refers to an equitable distribution of impacts; both benefits and cost (Litman, 2018). Equity is more than about providing subsidies and discount tickets. It should encompass the ease of use, connectivity, and accessibility. For example, the use of monthly discount passes is effective only when the bus stops are easier to access.

Low-income and other vulnerable communities should not bear the negative impacts and costs of transportation facilities disproportionately. Rather, public transportation should provide access to jobs and opportunities to these disadvantaged communities (Transport for America, 2018). By providing access to opportunities, transportation investments can be used as a driving force to promote social and economic equity.

To address transportation equity, the vulnerable community should be involved in the planning process and projects prioritised based on their needs. It is equally important to collect the relevant data and measure progress to ensure program effectiveness in reaching beneficiaries and achieving the target goals. This article looks into the case study of JARC to understand the steps taken by FTA to implement social equity through transportation planning.

Case Study: Job Access and Reverse Commute (JARC), USA

The main aim of Job Access and Reverse Commute (JARC) program, administered by the Federal Transit Administration (FTA) (1998 – 2012), was to assist low-income individuals in accessing employment, job training and childcare services. Low-income individuals living in the inner urban cities had difficulty accessing many new entry-level jobs located in the suburban areas. Under JARC, FTA provided grants to transit agencies and other service agencies to fill gaps in transportation services for welfare recipients and other low-income individuals (FTA, 2016). Made available for three years, it administered project funding on a cost-sharing basis. Federal funds covered up to 80 percent of the capital and planning activity and up to 50 percent of operating costs.

Some of the programs implemented under JARC funding were about expanding fixed-route public transit routes, late-night and weekend service, shuttle service, guaranteed ride home service, ridesharing and carpooling and so on (FTA, 2007). The policy incentive while designing the transportation policy encouraged the local, regional and state agencies to collaborate with each other (Sandouvel et al, 2009). Apart from organizing trips, JARC also utilized its funds for information-based and capital investment programs (Figure 1).

Figure 1: JARC Services by Type, 2006 – 2009 (Source: An Evaluation of Job Access and Reverse Commute (JARC) Program Services Provided in 2009)

For example: Camden, New Jersey provides shuttle service that operates three times a day matching the three work shifts at the industrial park. Phoenix, Arizona runs service through western suburb connecting community college with residential area and retails stores. Sanford, Maine provides demand-based van service for getting to work from early morning until late night.

The five major goals identified under JARC programs are as follows (FTA, 2016):

  • Expanding geographic coverage
  • Extending service hours or days
  • Improving system capacity
  • Improving access/connections
  • Improving customer knowledge

The two performance measures used by FTA to evaluate JARC-funded projects are:

  • Number of jobs accessed
  • Number of rides provided (one-way trips)

Response to the Program

For the financial year 2009, 910 projects were funded under the JARC program. Out of these, 44% served in large urban areas, 31% in non-urbanized or rural communities and 25% in small-urbanized areas. JARC supported programs provided 27.3 million one-way trips, made 51.8 million jobs accessible, which included 25.3 million low-wage jobs and 7.7 million jobs were likely reached (Commonwealth Environmental Systems, Inc, 2011).[KI1]

Figure 2: Usage pattern of JARC services (Source: Thakuriah, 2011)

Another survey conducted by researchers at University of Illinois (2009) focused on the mobility and employment outcomes of 573 respondents using any of the surveyed 26 JARC funded transportation service. Compared to non-JARC users, JARC users were less educated and had lower income brackets. About 42% of respondents reported personal incomes of less than $10,000 (~ INR 5,10,000 in 2011), and one in five had not completed high school (Thakuriah, 2011). This indicates that the JARC services effectively served low-income vulnerable communities.

The survey results show that 93.5% of the respondents rated the service as “important or very important” for keeping their job and 34% reported that they wouldn’t be able to commute to and from work if the service was not available. Over one-third users found that transportation services were more affordable with JARC (Thakuriah, 2011).

Figure 2 shows, out of the 23% unemployed, 25% of individuals used the services to access job trainings, about 8% for job seeking and 21% travelled to school (Thakuriah, 2011).

Figure 3: FTA JARC Services and Funding, 2005 – 2009 (Source: An Evaluation of Job Access and Reverse Commute (JARC) Program Services Provided in 2009)

Regarding economic impacts, the study reports a median reduction in generalized travel cost that is estimated to be $3.15 per trip. The median of hourly wages at the primary job also increased by about 14%. At the time of the survey, the median weekly earnings was estimated to have gone up by 15% (Thakuriah, 2011). The graphs and data highlight the fact that JARC programs helped people to access jobs and supported their financial stability. Increased wages could be due to shifting to a higher paying job or increased hours at work. Subsequently, FTA also increased the investment and the coverage of services under JARC over the years (Figure 3).

These results show the potential positive impact of JARC programs on the mobility, employment and economic outcome of its low-income users. However, since the survey does not have an experimental setup for evaluation, the lasting impact of JARC funding is not entirely clear (Sandouvel, Peterson and Hunt, 2009). JARC is one of the multiple possible and creative solutions that agencies can implement to support disadvantaged communities and promote equity in public transportation.

As of 2012, consolidating JARC with the existing Urbanized Area Formula Program and the Formula Grants for Rural Areas Program enabled JARC programs to apply for funding through the urban and rural transit program (GAO, 2017). This was mainly due to changes in JARC’s formula program status wherein separate funding was not available anymore. However, when GAO interviewed few JARC services, two-thirds of them reported to continue providing some form of service.


“Every project’s stance on equity should be assessed by asking the following questions:

  • Does it meet an important need identified by a disadvantaged community?
  • Are the benefits associated with the significant, rather than incidental?
  • Are benefits targeting the low-income residents?
  • Does it avoid substantial harms to the community?

(Marcantonio and Karner, 2016)

The services under JARC were in response to critical issues highlighted and put forth by the community. Upon implementation, there were positive and significant effects on the mobility, employment and economic outcome of the low-income users. A majority of the beneficiaries were less educated and low-income groups. Thus, the benefits of the program was reaching the disadvantaged positively.

Key policy implication of JARC program is to improve public transportation in order to address the social needs. Economic outcomes of the low-income population is positively impacted through accessible and affordable public transportation. During its run, JARC focused on operating rides, in improving the information access and infrastructure capacity of the service region. This combination of capacity building helped many of these JARC funded programs to sustain by themselves, even after the end of its tenure in 2012. However, depending on the intensity of institutional and grassroots support, different cities responded to JARC in different ways (Sandoval, Peterson and Hunt, 2009).  While in some cases, the regions came up with many innovative ideas, whereas some strategies were traditional (Cervero and Tsai, 2003; Sandoval, Peterson and Hunt, 2009). This is also because transportation models are highly relevant to the context of the cities.

Looking at the Indian scenario, high land prices in the core of the city forces economically disadvantaged communities to the fringes of urban development. Therefore, Indian cities are continually experiencing informal settlements in developing or peri-urban areas that lacks infrastructure. This makes opportunities inaccessible, lengthens commutes to their workplaces and degrades the quality of their commute. Being mindful of social equity and incorporating these concepts into the early stages of transportation planning ensures the vulnerable communities to have access to jobs and opportunities. Through equitable access to transportation supports, the promotion of economic stability and social standing of vulnerable communities is necessary.

Featured image source: Thakuriah, 2011

Read More

Modernisation of Operations Management: Role of ITS in Bus Operations at NMMT and the Netherlands


Management and operations in transportation systems is defined as an “integrated approach to optimize the performance of the existing infrastructure through implementation of multi-modal, cross-jurisdictional systems, services and projects” (FHWA, 2013). It focuses on the transit vehicle operations directly and how they interact with the transit users. Increasing the performance of an existing infrastructure can improve operational performance, reduce long-term costs and save time (Abou-Senna et al, 2018). The components under operational systems are (ADB and MoUD, 2008; COST, 2011):

  • Route planning
  • Capacity augmentation
  • Ticketing, fare collection and revenue management
  • Operations management (Schedule span, type of services, driving rules, etc.)
  • Customer’s orientation
  • Passenger information
  • Operator’s efficiency
  • Human resource development
  • Quality Management (including safety, security, operator’s training, etc.)

It is important that the transport infrastructure always adapt to the constant growth of the city and its never-ending demand. Information Technology Services (ITS) provides many solutions and models that can help in data collection, forecasting the demand, tracking the vehicles and the passenger movement. All major cities, like Amsterdam, Sydney, Sao Paolo, London, etc. make extensive use of technology in their bus operations and maintenance. They have a centralised command centre and they track the buses through GPS (EMBARQ, 2010).

The benefits of management and operations strategies like these brings forth safer travel, reduced delay in commute, improved reliability, lesser wasted fuel, cleaner air, etc. (FHWA, 2017). Earlier, we have identified that Indian cities have started implementing ITS to help improve its transportation planning and management. In this article, we will study the data management and collection methods in practice at the Navi Mumbai Municipal Transport (NMMT) control centre.

Case Study 1 – Real-time Data Management at NMMT, Navi Mumbai

Currently, NMMT has a bus fleet of 467 buses running on 75 routes. It experiences a daily ridership of approximately 3 lac passengers and generates an approximate daily income of Rs. 37-40 lacs. All the bus lines add up to a total route length of 1895 kms. and have an average length of 26 kms. The average headway is about 15 minutes, the maximum being 65 minutes and a minimum of 7-10 minutes (“NMMT City Bus System”, 2017). NMMT has allocated the buses among 3 depots (Turbhe, Asudgaon and Ghansoli) and 13 bus terminals.

On similar grounds of other major cities mentioned earlier, NMMT has also established a centralised command centre. It tracks the daily movement in the buses to make its operations and maintenance more efficient. They have implemented the real-time data management system through these eight modules:

1.      Automatic Vehicle Locator System (AVLS)

AVLS captures the real-time on-board location and helps create a substantial database where the progress of the bus is stored on a second-to-second basis (Hounsell, Shrestha and Wong, 2012). It receives and stores the bus location and also the bus event information through an on-board GPS. Through this system, the location, speed and the route of the buses can be tracked. From the current location of the buses being tracked and comparing it with an average gives the estimated time to reach a destination. Through the same module, the estimated time for the bus to reach a bus-stop is also calculated.

Fig 1 – The total number of GPS enabled buses distributed among the three depots.

Over 95% of the buses have a GPS installed in them. GPS boxes in the older buses are being installed externally, while the newer buses come with an inbuilt GPS. Based on the movement of the bus, its status (Running, idle, on-trip standby, off-trip standby) gets constantly updated at the control centre, which is useful during the peak hours.

2.      Passenger Information System (PIS)

Deriving the information from AVLS, the control centre constantly tracks the real-time information of the buses.  It calculates the estimated arrival and travel time of the buses based on the historical travel data across different road segments and the time of the day. The commuters can receive this information (estimated arrival and travel time) through the mobile application. The passengers can also get information about the bus drivers and report for incidents.

The passenger movement is counted from the tickets count, through which the peak and off-peak hours are estimated. NMMT uses this information to dispatch the buses and at the same time maintain a reserve stock of them. The reserve stock is useful in case of unprecedented demand or breakdown of a bus.

3.      Control command centre

The control centre constantly records and analyses the real-time information of the buses and passenger’s commute. AVLS and PIS provides a substantial database, which is useful in the maintenance and operations of the buses. Based on the data provided, the control centre is able to:

  • Forecast demand
  • Avoid bus-bunching
  • Check the fare collection and segregating it according to different categories
  • Track the buses for route violations and over-speeding
  • Check for incident reports
  • Interact with the staff and the commuters
  • Maintain the database

Image 2 – The role of control center in real-time data management of NMMT. (Content source – Hounsell Shrestha and Wong, 2012)

4.      Incident Management

The control centre keeps a track of the bus operators and if their buses are following the route or not. They also maintain the incidence reports submitted by the commuters. In cases of any issue noticed by the centre or submitted by the commuter, the control centre resolves it immediately. Operational faults and break-downs are resolved by the respective depots, this:

  • Releases the work-load on a single depot
  • Allows depots to deploy reserve buses effectively
5.      Mobile application

Information like the schedule of the buses, its operators, etc. are available on the mobile application.  Through the mobile application, the commuters are capable of:

  • Checking the nearest bus-stops and routes
  • Checking the available buses and the waiting time
  • Setting a time for notification to leave their place of origin and reach the bus stops.
  • Checking the details of the bus and the bus operators
  • Reporting an incident
6.      Business Intelligence, Financial management system and Enterprise management system

The control centre creates different real-time reports for the general manager, the accounts department and the employees of NMMT. These reports help them to monitor and analyse the performance of the buses and the operating staff.

7.      Scheduling and planning

The scheduling of the buses at the initial stages follows the traditional approach by over-lapping On-site surveys, Activities according to the land-use maps and The number of buses available.

The number of buses on a particular route are increased or reduced according to the demand of the commuters. This demand is tracked online through the count of the tickets.

8.      Automatic Fare Collection System

There are many ways to register a trips made by the commuters; through on-board ticketing, monthly passes and through a mobile application. All of these are recorded and maintained to analyse the daily ridership in the buses. Through which, the peak and off-peak hours are estimated. The same online system is also used to create stock correction reports.

Case Study 2 – Network of Bus Corridors in the Netherlands

Any transportation system is based on potential user’s demand. This demand forms the technical foundations for designing the system, planning operations and the financial feasibility (EMBARQ, 2010). Route planning of any public transport should always be in response to the context of the neighborhood and in consultation with the local stakeholders. It should be laid out to serve the maximum commuters in the most efficient way.

Following a similar ideology, the development or improvement of the public transport in the Netherlands is done gradually (from a regular bus to a dedicated infrastructure) on the basis of the integral vision of the change in transport requirements (number of passengers) and the development of the locations (with the increase in number of residents and jobs) (Public transport in the Netherlands, 2016).

This data to document the necessity to develop a route is collected through many ITS models. An estimated amount of €170 million is budgeted for 75 projects in total; for data collection models such as cluster travel information, Multi-Modal information, dynamic traffic management, etc. (Ministry of Infrastructure and Environment, The Netherlands, 2012). The data is processed into travel information, for both unimodal and multimodal mode, through apps such as 9292 (public transportation) and ANWB (Dutch Automobile Club). The travel information is useful for improved accessibility and traffic flows. The appropriate use of ITS architecture leads to co-ordinated and standardised development of a cohesive framework of technical and information structures (Ministry of Infrastructure and Environment, The Netherlands, 2012).

The integration of different services is also one of the key features of Dutch public transport. It follows a hierarchy of fast (peak hour), local and community, and demand responsive services. The bus operators setup their time-tables around a ‘transfer-scheme’ to be able to find a convenient way to connect to a metro/rail. The ticketing and fare system is also integrated. Use of Strippenkaart, sterabonnement or ov-chipkaart (tickets and pre-paid cards) are capable to allow the commuters to travel using the same fare and tickets.


The real-time data management system implemented in NMMT is still young and constantly upgrading. However, a positive impact in the operations can be seen. Since the implementation of this system, there has been a significant reduction in the incident reports (Fig 2). The statistics suggest that cases of over-speeding of buses is almost negligible now.

Fig 2 – Percentage reduction in incidence reports (Content source – NMMT)

Through constant tracking of the buses and implementation of this system, NMMT is now capable of:

  • Monitoring the services of the buses
  • Managing operational maintenance and reports
  • Real-time incidence reporting and resolving
  • Retrieving performance data for post-process applications
  • Reducing the manual data collection

Efficient data collection, availability of travel information and integration among different operators are key for developing an efficient operational model. A coherent and integrated route plan ensures user-friendliness and higher usage of the bus services. It has a direct influence on the passenger demand, reduced travel time and the operating costs; hence, also on the revenues (ADB and MoUD, 2008). Indian ULBs have also started developing similar models, however, the process of implementation is rather slower and complex. With an increasing use of ITS in bus operations, open data collection and disseminating travel information is getting easier and more efficient.

Read More

Low Carbon Emission Bus Fleets: Case Study of Shenzhen, China


In the recent years, climate change and increasing pollution levels in urban areas have brought our attention to the detrimental impact of the fossil fuel based transportation sector on the environment. In 2010, the transportation sector alone contributed to 14% of 2010 global greenhouse gas (GHG) emissions. 95% of the global transportation energy in 2010 came from fossil fuels that are highly polluting (EPA, 2018). Considerable reduction in the GHG emissions can be achieved and urban air quality improved by shifting to low-emission vehicles that run on clean fuel. Low emission vehicles use alternative fuels such as biodiesel, natural gas, hydrogen (fuel cells), ethanol, propane, compressed biogas, biomethane, electricity and so on. Electric vehicles are the cleanest amongst these, with zero tailpipe emissions during operations. Every zero-emission pure electric bus eliminates about 1,690 tons of CO2 over its lifespan of 12 years, which is similar to removing 27 cars off the road (US Department of Transportation, 2016). This article takes the case study of Shenzhen, China to understand the initiatives taken by their authorities to develop the largest electric bus fleet in the world.

Case Study of Shenzhen, China: World’s Largest Electric Bus Fleets

Located in the Pearl Delta region, the city of Shenzhen is a major financial, industrial and technological center in Guangdong Province, China. It has developed rapidly due to its special economic zone (SEZ) status and its proximity to Hong Kong. As of 2015, Shenzhen is home to about 11.6 million residents and covers an area of 1,991.64 square kilometres (Shenzhen Bureau of Statistics, 2016).

In Shenzhen, 0.5 percent of the city’s total vehicle fleet is diesel buses, but they accounted for 20 percent of the city’s transport emissions (Ying, 2017). Switching to electric vehicles was one of the solutions to improve air quality substantially in the industrial hub. The city of Shenzhen began introducing electric buses (e-buses) in 2009 and since then it has pushed for 100% electrification of its bus fleets. As of 2018, Shenzhen has electrified its entire fleet of 16,359 buses (Lu, Xue & Zhou, 2018).

Cost Management

Even with the current advancements in technology, the upfront cost of an e-bus is still higher than that of a diesel bus, and public transportation organizations had to find ways to deal with the massive investment deficit. The authorities in Shenzhen took initiatives at many levels to be able to implement 100% electrification of their buses. It was made possible through:


Capital investment in the form of national and local subsidies made it possible to electrify 16,359 buses in Shenzhen. For example, a 12-meter e-bus in Shenzhen received $150,000 in government subsidy covering more than half of the vehicle’s price (Shenzhen Municipal Development and Reform Commission, 2016). Apart from the e-buses, the government has also promoted clean energy vehicles by:

  • Providing financial subsidies for using charging facilities for other private electric vehicles
  • On the purchase of electric taxis and passenger cars within their city limits.

Cost of the Batteries

According to the bus operators, the high upfront cost of e-bus (2 to 4 times of a traditional diesel bus) is one of the major hindrances in adapting to this technology. (Shenzhen Urban Transport Planning & Design Institute, 2017). The batteries attribute a majority of the higher cost of e-buses. With growing technology and economies of scale, cost of the battery for electric vehicles have steadily declined over the years (Figure 1) (Bloomberg New Energy Finance, 2018). Figure 2 shows that for a longer route the Total Cost of Ownership (TCO) of e-buses is lower than that of diesel buses (Bloomberg New Energy Finance, 2018). TCO includes the upfront cost, operating and maintenance cost.

Figure 1: Lithium-ion battery’s price survey – volume weighted average (Source: Bloomberg New Energy Finance)

Figure 2: TCO comparison for e-buses and diesel buses with different annual distance travelled (Source: Bloomberg New Energy Finance)

Defining the Role of the Stakeholders

A change of battery is required once during the lifetime of the bus and costs almost half the price of the buses. Shenzhen bus operators worked out a procurement deal with the manufacturers to provide a lifetime warranty on vehicles and  batteries. Manufactures providing warranty for the vehicles and batteries reduced a significant part
of the maintenance cost for the bus operators (Lu, Xue & Zhou, 2018). This distributed the financial risks among the major stakeholders. Some of the major stakeholders include:

  • Central and local government
  • E-bus operators (Shenzhen Bus Group Ltd)
  • E-bus manufacturers (Build Your Dreams)
  • Power supplier and distributor (Shenzhen Power Supply Bureau Ltd)
  • Transmission system operator (China Southern Grid Corporation)
  • Charging infrastructure operator (Potevio Ltd)

Figure 3: Illustration of major players and their interactive role (Source: C40 Cities, 2016)

Some operators also leased the buses and charging facilities instead of buying them upfront. Outsourcing charging and maintenance facilities turned-up to be profitable. Through such initiatives and subsidies, Shenzhen was able to
adapt to electric buses within a span of 6 years (Shenzhen Urban Transport Planning & Design Institute, 2017).

Local Support

Shenzhen has a strong local technical and industrial support in the form of home-grown high-tech companies like Build Your Dreams (BYD). Over the last three years, through technological innovation and mass production, BYD has managed to bring down their battery costs by half. These have a longer lifetime, faster charging time and better safety features. BYD, central and city government officials have worked together to achieve Shenzhen’s sustainable urban development goals through corporate innovation and government policy (Chen & Ogan, 2016).

Optimising Operations

Charging and operations were optimized by procuring e-buses that can support a full day of operation (around 250kms) in a five-hour charge (Lu, Xue & Zhou, 2018). Apart from this, bus routes furnish sufficient battery charging infrastructure to ensure undisrupted service. Currently, the ratio of charging outlets to the number of e-buses in Shenzhen is 1:3 (Shenzhen Urban Transport Planning & Design Institute, 2017). E-buses are fully charged overnight and supplemental recharge is done during off-peak hours when the electricity prices are lower. To promote the use of electric vehicles within the city, these charging facilities are also available for private cars and taxis at a subsidized price.

Figure 4: Electric bus adoption in Shenzhen, China (Source: Shenzhen Urban Transport Planning & Design Institute Co., Ltd)

Benefits Achieved

The environmental benefits of 100% electrification of the city bus fleet have been highly positive. In the year 2015, Shenzhen saved standard fuel of 84,000 tons and reduced 150,000 tons of GHG emissions (C40, 2018). The estimate suggests that the average total mileage of one e-bus will be approximately 174.4 kms with reductions of (Ying, 2017):

  • 48.6 tons of nitrogen oxides
  • 62.1 tons of non-methane hydrocarbons
  • 1.2 tons of particulate matter

By implementing 100% e-buses fleet, the city saves 345,000 tons of fossil fuel per year. Apart from reducing air pollution, e-buses have other benefits (Ying, 2017):

  • They are more fuel-efficient
  • The cost of fuel is lower
  • The engine does not produce any noise


Major cities, like London, Amsterdam, France, etc. have started switching to electric buses in their own capacities. The case of Shenzhen however, is a lot of different since it is the first city which has managed to convert its entire fleet to electric buses. From this case study, major takeaway is that it is possible to convert traditional diesel bus fleets to e-buses by:

  • Encouraging electric vehicles through subsidies
  • Having strong technical assistance from local manufacturing industry (like electric vehicles and batteries)
  • Leasing bus and charging infrastructure
  • Getting buses and battery warranty from the manufacturers
  • Outsourcing maintenance and operation services

The city of Shenzhen is working to reduce pollution and improve air quality with the use of clean fuel in their transportation sector. From the current state, the city of Shenzhen has now turned its focus to electrify their taxis by 2020 (Sisson, 2018). However, this case study also shows that in the current scenario, only large cities that have the financial capacity to provide subsidies can attempt for electrification of their public buses.

Featured image source: Getty Images

Read More

Preventive Maintenance Practices for Bus Fleets: Case-Study of WMATA, Washington, USA and APSRTC, India


Routine bus maintenance is crucial for the smooth functioning of an effective bus system. Preventive maintenance is defined as a servicing undertaken by technicians to maintain equipment in a satisfactory operating condition, to avoid failures or major defects (US Department of Defence, 2018). It helps anticipate and initiate repairs, improves safety, prevent service interruptions and critical mechanical failure on the road. Regular maintenance of bus fleets has the benefit of (National Academies of Sciences, Engineering, and Medicine, 2010):

  • preventing mechanical failures
  • achieving zero breakdowns during service
  • reducing Green House Gas (GHG) emissions
  • lowering fuel costs by improving fuel efficiency
  • promoting passenger satisfaction and public
  • improving occupancy rate, and
  • increasing service life of buses

Preventive maintenance measures are usually conducted at fixed intervals. These intervals are based on legal requirements, the operating agency’s prior experience, manufacturer’s warranty requirements or merely borrowed from other agencies. The preventive maintenance interval suggested in the United States is 6,000 miles or about 10,000 kilometres (National Academies of Sciences, Engineering, and Medicine, 2010). In India, APSRTC (2016) reports doing the same within 9000 to 15,000 kilometres depending on the type of operation, age and model of the bus. Similarly, BMTC (2012) performs a docking preventive maintenance at a span of 20,000 kms. apart from the periodic 1 day, 2 days and 10 days maintenance. Apart from Preventive Maintenance Inspections (PMI), daily service line inspections are also undertaken. Through the case studies of WMATA and APSRTC, this article looks into the measures, needs and advantages of Preventive Maintenance.

CASE STUDY 1: Washington Metropolitan Area Transit Authority (WMATA): Use of AVM to optimize preventive maintenance

Metrobus service at Washington Metropolitan Area Transit Authority (WMATA) provides service in Washington DC. With a fleet of 1500 buses, WMATA covers an area of 1500 square miles. It serves a population of 3.4 million and logs about 134 million trips annually. As of 2010, the fleet also contains 460 CNG buses and 50 hybrid buses, with steps being taken to increase the number of low emission buses. WMATA has a preventive maintenance interval of 6000 miles (National Academies of Sciences, Engineering, and Medicine, 2010).

WMATA uses Automatic Vehicle Monitoring (AVM) system to support their preventive maintenance measures effectively. About half of their fleet are equipped with AVM and depots are equipped to download the service line data wirelessly when the bus enters the depots. Data on various components such as engine, transmission, heating, ventilation, air conditioning, door system, brake pushrod travel, etc. are monitored, recorded and reported on a daily basis. When specific parameters are over the critical range, the driver receives an alert immediately. The system also notifies the control centre and maintenance department about the flagged defaults. In other non-critical cases, an itemized report (annex 1) is generated to aid technicians to prioritize repairs. Technicians then schedule non-critical defects for maintenance at another time or during the next upcoming PM inspection (National Academies of Sciences, Engineering, and Medicine, 2010).

The benefits of preventive maintenance through AVM are as follows (National Academies of Sciences, Engineering, and Medicine, 2010):

  • Senior technicians are able to conduct a trend analysis from the review of past issues. The trend analysis generates a work order on detecting the actions required to correct the defect. This relieves the technicians from diagnostics work.
  • Fault detections are faster and more accurate
  • Using AVM has enabled the collection of system components data on a daily basis, instead of PMIs of 10,000 kms. This regular check on components has helped prevent initial problems from growing into critical issues.
  • Loaded with quality information and analyses, WMATA is able to request certain technical specifications while procuring new buses.
  • The agency also uses the data to check for procedural compliance of drivers
  • The agency is able to save money from warranty claims

CASE STUDY 2: APSRTC: Maintenance practices to maximize fuel economy

Improvement in fuel efficiency is another major benefit that stems from regular fleet maintenance. In 2015-16, 47 SRTUs reported that on an average they spent about 25% of their operating cost on fuel (Ministry of Road Transport, 2017). Therefore, even a small improvement in fuel efficiency significantly reduces the operating cost. The cost saved can be diverted into critical service repairs and improvements.

Andhra Pradesh State Road Transport Corporation (APSRTC) covers over 4.3 million kilometres and carries about 6.5 million passengers. As of 2015, it has 12,152 buses. In an effort to maximize the fuel economy and reduce GHG emissions, Energy Sector Management Assistance Program developed bus maintenance guidelines and implemented them in Hyderabad and Vijayawada in APSRTC in 2011. Some of the recommended course of actions include (ESMAP, 2011):

  • management commitment
  • setting fuel economy benchmark
  • publicly communicating fuel economy results
  • automation of data collection and analysis
  • using data to refine preventive maintenance interval
  • conducting two-tiered checks at the depot and central maintenance facility
  • requiring mechanics to sign-off repairs
  • conducting random and period checks of repairs
  • having an independent QA/QC team
  • retraining mechanics periodically
  • Trainings for low performing drivers
  • providing awards as incentives for technicians and drivers

A key recommendation was to conduct two-tiered maintenance checks that are well documented and standardized as operating procedure. Junior to mid-level mechanics can conduct the Tier 1 (Annexure 2) maintenance while Tier 2 (Annexure 3) maintenance needs to be done by well-trained senior mechanics.

The above recommendations were implemented and tested over a period of 10 weeks in 2011. Under APSRTC, 3 bus depots were chosen to do the field testing, namely Bharkatpura (BKPT) depot in Hyderabad, Governorpet1 (GVPT1) and Governorpet2 (GVPT2) in Vijayawada. In each of these depots, 10 buses and 20 drivers performing lowly on fuel economy were identified each month. Maintenance for low performing buses and trainings on good driving practices for the drivers was conducted to maximize the fuel economy (ESMAP, 2011).

Image 1: Maintenance facility of APSRTC Source: APSRTC, 2016

From the subset of buses that underwent maintenance, the results show that the maintenance had a positive and significant effect
on the fuel economy. Average fuel economy benefits range from 6 to 9 percent. Figure 1 shows the fuel economy improvements from repairs at Bharkatpura Depot in Hyderabad Older buses (>=4 years) appear to benefit more from the maintenance activities than newer buses (< 3 years) (ESMAP, 2011).

Figure 1: Percent fuel economy improvements from repair of buses at Bharkatpura Depot in Hyderabad.

Source: ESMAP, 2011

The trainings for drivers included instructions for best practices with on-road training. The design of the training accustomed the drivers with the local driving conditions. From figure 2, it is evident that on an average the fuel economy improvements from driver training were between 5 to 10 percent. Displaying the fuel economy’s information publicly made the drivers feel highly motivated. Awarding the mechanics and drivers for good fuel economy performance boosted their pride and their performance (ESMAP, 2011).

Figure 2: Percent fuel economy improvements from driver training in Vijayawada and Hyderabad

Source: ESMAP, 2011

Scaling up the results of figure 3 for the entire fleet of Hyderabad (3290 buses), the gain in fuel economy from maintaining old buses would be around 3% and from maintaining new buses it would be 2.1%. Similarly, the benefit of driver training for the entire fleet is estimated to be 2.7%. When extrapolating the results for both maintenance and driver training combined, the benefit from fuel economy is estimated to be 4.8% for the new buses and 5.7% for old buses (ESMAP, 2011).

Assuming 100 buses in a depot, the cost-benefit ratio of the recommended changes is 1.94 for new buses to 2.31 for old buses. The monthly cost of implementing all the recommended changes is estimated to be INR 1,46,651 per bus and the fuel savings per month is estimated to be INR 2,84,928 per bus for newer buses and INR 3,38,352 per bus for older buses. In Hyderabad alone, APSRTC can save about INR 95,40,000 per month by achieving a 5 percent improvement in the fuel economy (FE) (ESMAP, 2011).

Figure 3: Comparison of Average Fuel Economy


In WMATA, the availability of real-time data has equipped the agency to engage in preventive maintenance measures actively, thereby ensuring smooth functioning of the bus system in Washington DC. Through data analysis, the agency has developed a deep understanding of their priorities and specific requirements in buses. Flagged issues are dealt with at the earliest possibility, rather than allowing it to develop into a critical and more expensive problem to fix.

In APSRTC’s case study, test results from Hyderabad and Vijayawada reiterate the importance of preventive maintenance and onroad training of bus drivers to maximize on the fuel economy. With cost-benefit ratios of 1.94 for new buses and 2.31 for old buses, the recommended maintenance activities prove to be cost-effective for large operators with in-house maintenance capacity. These results would be more effective on considering the benefits from reduced GHG emissions and improved safety. The APSRTC case study has demonstrated that overall efficiency and safety improvements can be achieved costeffectively through maintenance activities.

The above recommendations for preventive maintenance are based on the assumptions that the depots have at least 70 to 100 buses, have an existing maintenance facility, has ability to conduct most of the maintenance activities in-house and has the capacity to train its drivers. These measures might be cost-intensive and challenging for informal bus operators who manage fewer routes with a smaller bus fleet. Yet, it is imperative for small-scale operators to plan and schedule their maintenance activities to benefit from improvements in fuel economy and improved safety.


Annex 1 – An example of a daily non-critical exemptions report generated

Source: National Academies of Sciences, Engineering, and Medicine, 2010

Source: National Academies of Sciences, Engineering, and Medicine, 2010

Annex 2: Tier 1 Checks At The Local Bus Depot To Improve Fuel Economy

Source: ESMAP, 2011

Source: ESMAP, 2011

Annex 3: Tier 2 checks at the central bus maintenance facility to improve fuel economy

Source: ESMAP, 2011

Source: ESMAP, 2011

Read More

Dockless Bike Sharing in Palava

A good public transport system supported by a bicycle sharing program for last mile connectivity can serve as a complete solution for solving urban transport issues in the cities. However, the implementation of a well-functioning bicycle sharing system has always been a challenge for the city managers. From the perspective of the city there are three major hurdles. First, high capital investment combined with the ongoing operations and maintenance costs[i] which barely are covered with subscription fees. Second, scarcity of land in the city to build enough parking stations at important nodes. And third, is efficient re-balancing of cycles according to the usage pattern restricting the availability of cycles[ii].

The advent of dock less public cycle sharing system in China reinvigorated the use of shared cycles as a solution for green commute in the cities. Traditionally, the bicycle sharing models relied on a docking system at the parking stations. The docks were capital intensive and constrained the number of cycles that could be parked at a particular station. The model also occupied considerable area at prime locations in the land scarce cities. On the other hand, the new dock less system reduces the capital requirements for the docks and also removes the necessity of defined land parcels. The cycles in the new system are fitted with IoT based GPS locks, which facilitates picking and dropping of cycles at any location. GPS based mobile applications with online payment integration have eased the process of cycle discovery and payments. The low price and ease of usability have facilitated the cycle sharing system to scale extensively. The long term attractive business proposition in the dock less system has also attracted venture capital for initial investments in capacity and innovation. The two large Chinese unicorns Ofo[iii] and Mobikes have managed to get investments of over $3Bn in just three years.

But the explosion of the dock less cycle system came with a downside too. The model seen as a boon to transit system became a menace for the streets[iv]. More than 2 million bikes are available for sharing in Beijing alone, clogging the streets and footpaths[v]. To manage the uncontrolled growth, cities have resorted to regulations.  Seattle was one of the first cities that placed regulations and fines on the cycle sharing companies[vi]. In India, a similar system is yet to take off on a major scale. However, Palava is one of the first cities in India which has managed to implement a dock less bicycle sharing model successfully with minimal regulation through technology. This has been achieved by accommodating mixed mobility in the urban design of Palava combined with IoT innovations by partner Zoomcar.

Case study: PEDL in Palava

Taking a few cues from evolving megacities like Beijing in China and few other European cities, Palava has designed its own system of dock-less cycle sharing that might yet become a trendsetter for not only Mumbai, but other parts of India as well.

Figure 1: PEDL cycles in Palava

Palava is a privately built smart city by Lodha group, which can be seen as a blue print for the future Greenfield urban developments. The city is designed on the ‘concept of 5/10/15 minute walk’ where daily commute for reasons such as shopping, school, work place are at a walking distance from every residence. 80% of resident’s daily trips can be met by walking or bicycling in Palava.


Palava adopted a model for locating cycle stations at every 50 meters from a residence. All the main aggregation points of the city such as shopping mall/arcade, club houses, schools, and city manager’s office were covered. The stations were clearly demarcated on the ground and were geo-fenced. At the launch 30 stations were identified in the city with 200 cycles. Geo-fencing facilitated parking of cycles in the allotted areas and prevented a situation of clutter in the city.

Figure 2: Geo-fenced cycle station in Palava

The campaign for launch of cycle sharing was widely circulated through social media such as Facebook posts, watsapp messages, emails and SMS. The cause of cycling was taken up by Palava cycling club and other active social groups within Palava. The well-connected and closely knit communities in Palava were helpful in early adoption of the system post the launch.

Usage and Response

The initial response from the citizens for the service was overwhelming with an average ridership of 1500 trips per day. The novelty factor of using the service attracted many users to the platform. However, with time the usage saw a dip and eventually stabilized at 1000 trips per day. Out of the 30 stations, 8 stations contributed to 60% of the trips. These were mostly popular destinations like shopping arcades, club houses etc. The usage varied during the span of the day, the maximum ridership was in two peaks in the morning and evening. These peaks corresponded with the work commute trips and as well leisure trips for fitness.

Demographic Analysis

The promotional price at the launch was set at INR 1 for 30 minutes hence there wasn’t much difference in the income levels of the users. There was a stark difference in the gender’s usage; only 4% of the females used the system compared to 11% for male. In terms of age structure distribution, the maximum users were in the age bracket of 22 to 35, which is also the largest cohort in Palava.

Figure 3: Weekday and weekend distribution


  • The parking for dock less system needs to be controlled using system such as geo-fencing. This ensures that the cycles are parked in certain spaces allotted to them and are not cluttered all over the city. The initial geo-fenced station’s radius can be kept higher and then it can be slowly reduced as the people start getting habitual.
  • Rebalancing the number of bicycles is very critical for smooth functioning and uptake of the cycle system. The usage pattern for the program at every station level has to be understood and should be subsequently programmed for rebalancing. If proper rebalancing is not done, then citizens will not be able to get cycles at the right place and at the right time. Hence, the whole objective of the sharing the resource might fail.

Figure 4: 24 Hour distribution of number of trips

  • Since the mobile application has integrated payment mechanisms, it is easy to create an incentive system. Users could be incentivised with low rates during non-peak hours. Even extra credits can be given for rebalancing (that is taking cycles from unused stations to the highly used ones).
  • Apart from the benefits of commute and health, the data collected from the trips made by the commuters gives valuable insights to urban planners and policy makers. The duration and length of the trips, origin-destination studies, time variance and demographics particularly are very useful for overall transport planning in the city[i].


By – Vaibhav Chugh, AGM (Strategy), Lodha Group

Read More

Kirkpatrick Model – Four Level Training Evaluation Model

Kirkpatrick model is one of the highly recognized and widely used training evaluation model. It was developed by Dr. Donald L Kirkpatrick (1924-2014).  It is one of the most effective models to analyse and evaluate the results of educational programs.  It can objectively analyse the impact and efficacy of training. As it proceeds, the evaluation process gets more difficult and time consuming. However, the higher level assessments also generates information that is more critical and valuable.

The four levels of Kirkpatrick model (Source –

By analysing each of these four levels, it is easier for a trainer to evaluate an effectiveness of training and find the ways to improve the future trainings. The four levels of the evaluation model are as follows:

  1. Reaction evaluation – Training participant’s opinion about the training and the trainer – The personal thoughts and the feelings are captured quantitatively through responses in a questionnaire (typically termed as ‘smile sheets’ or ‘happy sheets’). Questionnaire analyses the training content, methodology, facilities and the course content. Learners also respond to their first reaction to learning experience.
  2. Learning evaluation – The extent of learning after the training – It measures the personal development of the trainees by analyzing the increase in knowledge, the acquired skills or enhanced intellectual capabilities.This is assessed before and after (pre-test & post-test) the training so as to ascertain the scale at which learner has gained the knowledge. The evaluation involves observation and analysis of the voice, behaviour and text of the trainee. The measurement at this level gets more difficult and laborious as the participant’s evaluation moves from learner satisfaction to learner’s knowledge advancement.
  3. Behavioral change evaluation – The extent to which the trainees applied the acquired knowledge and changed their behavior. This change can be immediate or several months after the training depending on the situations. Behavior evaluation analyses the transfer of acquired knowledge from the training session to the work place. Here, the primary tool for evaluation is predominantly the observation. Apart from the observation, a combination of questionnaires and 360 Degree feedbacks are also used. It is rather difficult to predict the change in behavior and hence, the evaluation process gets even more difficult. It requires important decisions in terms of when and how the trainees should be evaluated.
  4. Result evaluation – To assess training in terms of business results. It is measured by assessing the change in key performance indicators of business which involves, achievement of standards and accreditations, number of complaints, profit and loss statements, business volumes, etc.  However, since all these factors are also affected by several other external factors it gets difficult to quantify the training impact on business results. This stage helps in identifying the ROI (Return on Investments) of the training.

In the context of trainings through UJJWAL at CIDCO, the training cell team captures the relevant information to evaluate the reaction of the trainees, which is the first level of the Kirkpatrick model. A feedback form that captures the reactions of the trainees is filled by them immediately after the training is over. 85-90% of the submitted participant’s feedbacks have already assessed the institute vis a vis faculty or the Subject Matter Expert (SME), relevance of the course, course content, training methods and other faculties. NIUA-CIDCO Smart city lab also incorporates the second level of the Kirkpatrick model. However, currently this is only being done for high end courses. At this stage, participants are asked to submit a brief on their learning in a pdf or doc version, so as to qualitatively assess the enhanced knowledge of the participant.

It is strongly believed that many of the participants in CIDCO have started implementing the knowledge gained during the training in their professional and personal lives. This can be evaluated through methods of psychometric assessments or 360 degree assessments in the third stage of this model. However, the tools to quantify the change in the application of the knowledge are still in development stages and can be assessed only in a larger group of participants over a period of 12-18 months. As the trainings gets more amenable in the coming months, UJJWAL’s training cell aims to take its evaluation process to the next stages of Kirkpatrick model. By doing so, it intends to measure a system wide impact measurable in terms of the people, the processes and the business of CIDCO.

Read More

Engaging Through Online Platforms


Throughout the world for many years, local bodies have been involved in deliberation of local issues, decision making within their capacities and choosing their leaders. The idea of citizen engagement in public affairs has been long prevalent (GCPSE, 2016). Similarly, the idea that computers and digital technologies can help us improve city in diverse ways, isn’t new either (Bollier, 2016). However, in the recent years there has been an increase in the number of citizen engagement activities and a shift is taking place from the top-down governance to a more horizontal process (Garrigues, 2017). With the changing trend, the policy makers have started looking for active citizen feedbacks to have a better sense of people’s priorities and to decide the need & shape of the public policy (Bollier, 2016; IPAT, 2015). The National Smart Cities Mission also identifies the importance of citizen engagement in the formation of a policy and actively works in applying it at different levels. In our previous newsletters we have discussed the strategies of citizen engagement taken up by different cities and a possible framework of process that can be implemented.  This article reflects on different case-studies around the world that initiated citizen engagement models on an online interface. It also reflects on their procedure and how they managed to derive an order in a situation of complexity.

Out of the SCPs of the 20 lighthouse cities there are many cities that understands the importance of using online platforms as an effective way of engaging citizens. Jaipur has come up with an online grievance redressal system app where the citizens can register any issues in their area. Surat has come up with many initiatives at different levels to ensure a comprehensive approach towards citizen engagement. Out of the many objectives, they have also developed an online citizen engagement platform for getting citizen’s feedback in decision making. Pune has created an ecosystem of around 400 partners to support the growing entrepreneurial culture and at the same time integrate the local stakeholders. Ahmedabad involves different groups of people, societies, working class to practice citizen consultation exercises for their inclusion.  There are many more examples to share.


Any citizen engagement process broadly involves three actors (GCPSE, 2016). They can then be further categorized according to their specialization:

  1. Decision makers – The politicians who aggregate the preferences of the citizens and facilitates the citizen’s expectations by deploying the resources and governance.
  2. Mediators – The public officials who deliver the public services to the citizens and implement the strategic direction of the policy decided by the politicians.
  3. Citizens – In a sort of ‘social contract’ with the politicians; gives the authority to the politicians and expects good public services in return. This also includes the local businesses and entrepreneurs.

The concept of citizen engagement requires an active dialogue between the citizens and the decision makers; it is not entirely similar to citizen participation (Garrigues, 2017). In citizen engagement, cities (or social systems) directly involve the citizens in the decision making process, it is a more formal structure that is organized by the public officials or the government. They do it by providing tools to consult and access public information, discuss with the elected representatives and monitor the implementations (Garrigues, 2017). Citizen engagement creates a sense of citizenship and educates the public in many ways (IPAT, 2015).  For an effective engagement process the public officials play an important role in mediating the preferences of the citizens and developing a network among the citizens with common interests. It is also very important the development model and the whole process is transparent. This is where an online platform can be of many utilities. Through the different case studies around Europe, we can develop an understanding on how they work.


1)      ZO!city

The model was implemented in Amstel III which is the south-eastern neighborhood of Amsterdam. Post-2008 financial crisis, the area once had 25-30% vacant spaces (Beer, 2014). The existing stakeholders had limited contact with each other and cohesively lacked a sense of ownership.

The fragmented stakeholders were the key strength of the neighborhood. However, to setup a collaboration among them was the main challenge. The implementation of the model, initiated by Saskia Beer, was a step-by-step process:

  1. Analyse the neighborhood and identify the main strategic points where smaller interventions could’ve made a lot of difference.
  2. Informal meetings with the local stakeholders were held, which included real estate owners, companies, business associations, community organizations, etc. to understand the priorities, their willingness and their capacities to invest in the development model.
  3. Using metaphorical and non-technical language, the mediators created a manifesto that triggered the stakeholders to envision their own ideas and make the planning process seem more accessible to the citizens and the stakeholders.

Fig 1 – The three interconnected pillars of the development model

This was done by deliberately using a ‘light-hearted and positive’ campaign over a rather serious vision (Beer, 2014). The development model works on three interconnected pillars. The municipality simultaneously had its own objectives for the development model.

Saskia Beer initiated ‘glamourmanifest’ following the model of co-operation and co-creation with a collective instrument of interventions and investments. Implementing an adaptive practice to adjust to the changes and the opportunities that come along the way (Beer, 2014).

By collecting the ideas and the demands of the users, an urban vision was then synthesized. Initiatives and desires of the stakeholders were located on a map and overlapped. ‘High energy zones’ were identified where a lot of ideas and stakeholders overlapped.

It was realized that to establish an effective network of co-operation between the stakeholders it was very important that the information regarding the various initiatives is provided to them at ease. At the same time, a sense of transparency and availability of information is always required, to accommodate this need an online platform was launched and ‘glamourmanifest’ changed its name to ‘ZO!city’.

Fig 2 – The online interface of ZO!city

Fig 3 – On clicking the pins, the description of the ideas shows up


Anybody using the website has the liberty to suggest an initiative which is then opened for public voting and sources of funding. The initiatives are geo-located on a map which are also classified and colour-coded on the basis of its functionality. The ideas are then openly scrutinized by the other users and is up-voted if it develops similar interests. When the project gathers enough response, it is then made open for public funding. By the use of the database and understanding the priorities of the stakeholders, the companies and their capital has started to come together. Most of the initiatives are proposed through the interface. In many cases, the investments are done by the private stakeholders, this reduces the dependency on the municipality and generates a state of financial self-reliability. The progress of the project can be tracked and users can directly give their feedbacks. As on 2017, the initiatives has kick-started the following projects:

  • Parking space sharing by ParkU
  • Electric bike sharing by Urbee
  • Ubuntu stadtsuin (city garden) by Empowerment co-operative Amsterdam (ECA)
  • E-car charging stations by Gemeente (municipality), Amsterdam
  • Co-working space by Carteblanche (Status-completed)

2)      Madame Mayor, I have an idea!

In Paris, a new participatory budgeting scheme was piloted by the mayor Anne Hidalgo in 2014. Unlike ZO!city, the ideas here were not crowd-sourced, instead the city administration proposed ideas which were then brought upon to the citizens for discussions and voting. In the initial years, the process concentrated on encouraging the citizens to initiate a discussion for the proposals.

After a few years of initiations by the city authority, the participatory budgeting process is now online and fully active (Simon, Bass, Boelman & Mulgan, 2017). The citizens of Paris can now directly propose an initiative by themselves. Currently, the process has five phases distributed (Simon, Bass, Boelman & Mulgan, 2017):

  1. In January and February, the proposals are made online which are supported by many neighborhood workshops.
  2. From March to May, a co-creation process takes place which brings the representatives of similar proposals together.
  3. Over the next few months, the ideas are shared online for public review. Selected by an election committee, these ideas meet the minimum criteria such as, public benefit, technical feasibility, the financial feasibility, etc. During this period, an elected committee assists the people in promoting and campaigning their idea.
  4. In September, the citizens are then allowed to vote for the most desired proposals.
  5. By December, the successful ideas are selected. The implementation and the budget is allocated in the following year.

The progress of the projects can be then tracked through various means such as on online platform, geo-located and overlapped on google maps and by infographics created by the teams.


Since the year of inception, the project has seen substantial growth. Currently, it is considered as one of the biggest citizen engagement programs in practice (Simon, Bass, Boelman & Mulgan, 2017). In 2014, the project received around 41000 votes for various proposals, the number raised to 67000 votes in the next year and then 160000 in 2016. The number of projects selected for implementation also increased from 9 to 219. The transparency of the process, political support and the continuous citizen engagement are the main reasons for the success of this initiative.

Fig 4 – The comparison of the selected projects and the participation of the citizens over the years.

Although, the process of these models are highly inclusive to the context of the neighbourhoods or cities, but still, similar projects in their own capacities have started emerging all over the world. For example, Madrid has ‘Decide Madrid’, which tracks proposals, debates, participatory budgeting and sectoral processes. Jakarta has initiated its share of citizen engagement from ‘Qlue’ which has different interfaces for different activities. Reykjavik, Finland has ‘Better Reykjavik’ working on similar grounds.


In the context of a neighborhood, the number of the stakeholders present are never specific and to define the style of interaction among them is rather complex. Even if the decision-making process is spontaneous and time consuming, the objectives can be clearly laid out and a definite process can be put in place. It is equally important to identify the stakeholders and understand their needs and ideas for urban transformation. According to their desires and the ambitions of the stakeholders, a proper network between them should be created. An online interface comes of many uses, a database of the existing stakeholders and their interests can be created. The database can also be created on the basis of the proposals and feedback of the users, at the same time it can also work as a source of information for them. The whole development model is highly transparent and allows the users to track the progress of the projects they are interested in. A possible framework can be summarized in the figure – 5.

Fig 5 – A summary of the possible framework of using an online interface for better citizen participation. (Source – glamourmanifest)

Indian cities has always had diversified actors with multiple interests. Identifying similar interests and developing a network among them can be a complex challenge and also an opportunity. An online interface can help the mediators and the decision makers to derive a sense of order in the complex network of interests and develop an incremental order in the development process.

SCP of Indian cities has considered many initiatives for citizen engagement, for example, Mygov has a forum which actively asks citizens for feedback and discussions, but, a similar model is hard to find. There are many takeaways from the above case-studies that Indian cities can use to develop an effective citizen engagement process. Implementing a similar model can help the decision makers in foreseeing a long-term urban synthesis and develop a sense of trust among the stakeholders.

Read More