Marketing the Public Bus: Case Study of LA Metro’s Orange Line

A shift towards public transportation is pivotal in dealing with issues such as traffic congestion and poor air quality. Although, one of the reasons for commuters to not shift to public transit is due to the highly competitive marketplace alongside private automobile companies. Private automobile companies invest billions of dollars every year to (Carrigan, Arpi & Weber, 2011):

  • Maintain their image,
  • Cultivate customer’s mind-set,
  • and, push their products into the market by creating demand

In the year 2009 alone, major automobile companies spent over US$ 21 billion globally on advertisements (Advertising Age Group, 2010). Such intensive marketing from the private sector highlights the need for public bus corporations to engage in cost-effective marketing campaigns to increase their ridership.

Public bus corporations can use various marketing strategies to (EMBARQ India, 2014):

  • Attract new riders
  • Retain existing riders
  • Improve public and political support
  • Educate and inform users about the facilities, and
  • Manage the public narrative through communication

When combined with a good service, branding and marketing encourages people to use the public bus network and thereby reduces the reliance on private vehicles. In this article, the case study of the Orange Line in Los Angeles Metro focuses on their branding, marketing campaigns and user education activities. Few other examples highlight similar aspects of marketing the public transit.

Metro’s Orange Line BRTS in Los Angeles, California

The Orange Line, a Bus Rapid Transit System (BRTS) started its service in 2005 in the San Fernando Valley area, as a part of the Los Angeles Metro. It is 29 kilometres long, has dedicated bus lanes and exclusive right-of-way. Metro (also the name of the operating agency) took many public outreach and engagement initiatives to disseminate the benefits of the public transportation and encouraged the commuters to make a shift. Following are some of the strategies:

  Branding

The brand of the Orange Line is incorporated into the system in numerous ways. The Orange Line is designed to be a part of the Metro’s vast rail network and provides equivalent quality of service. Similarly, it is marketed as part of the Metro and not as a separate entity. This idea is conveyed by keeping the Orange Line brand consistent with the familiar Metro’s colour code instead of typical numbers for bus routes (Figure 1). The colour scheme is carried over and incorporated into multiple components of the service, such as vehicles, bus stations, signs, maps, seating, etc. (Carrigan, Arpi & Weber, 2011).

Figure 1: BRTS as a part of the Los Angeles Metro map (Source: Los Angeles County Metropolitan Transportation Authority)

 

Figure 2: Brand promotion. (Source: Flynn, Thole, Perk, Samus & Van Nostrand, 2011)

  Marketing Campaigns

During the construction of Orange Line, the management regularly posted construction updates and other information through regional newspapers, the acoustic barriers of their construction site, town hall meetings, fliers, etc. In a pre-launch survey, it was found that people were confused if the Orange line was a bus or a train service. Through “It’s…” promotional campaign, the management answered the questions raised by the people and highlighted the various advantages of the new line (Carrigan, Arpi & Weber, 2011).

Image 3: Metro Orange Line “It’s…” campaign (Source: Flynn, Thole, Perk, Samus & Van Nostrand, 2011)

In 2008, to increase sales tax by half-cent to fund transit projects, the Measure-R bill was up for a public ballot vote. The LA Metro ran the “Opposites” campaign just before the bill to:

  • Dissuade people from using private vehicles
  • Promote the use of the Metro, and
  • Increase awareness about the Metro services

Figure 4: LA Metro’s Opposites Campaign (Source: SEGD)

Comparing the contrasting ideas for public and private transportation, this campaign communicated that Metro was the solution to LA’s problems such as traffic congestion, air pollution and fuel usage (Lejeune, 2013).

The campaign, passed through public approval, helped in securing funding of over $40 billion over 30 years for major transit and highway projects. The discretionary ridership of those who have a car but still use the public transit, also increased from 24% to 36%. Metro’s “unfavorable” ratings dropped from 27 percent to 12 percent and “strongly favorable” ratings increased by 17 percent. Public awareness of the Metro is now at 95 percent (Lejeune, 2013).

  User Education  

User education is an essential aspect of launching and promoting the public transit. Free rides, study tours and safety instructions are some ways to engage the community and acclimatize them to the transit system. During the launch of the Orange Line, the Metro provided free rides on the opening weekend of operations to familiarize the public with the BRTS service and eliminate any uncertainties that existed before. Also, the BRTS vehicles were showcased in 2005 RideFest to promote the use of public transits and congestion management practices. As part of their safety program, Metro made an interactive presentation to about 30,000 residents living nearby and about 100 schools within a 1.5-mile radius of the Orange Line busway (Flynn, Thole, Perk, Samus & Van Nostrand, 2011).

Apart from communicating with the public through press releases, user information systems and marketing campaigns, LA Metro has provisions for bi-lateral communication to hear from the customers. They are very responsive to user feedback systems. The Metro Customer Centre was made more welcoming and cheerful to encourage the use of the facility (Carrigan, Arpi & Weber, 2011).

Other Examples

  Metrobus, Mexico City

In Mexico City, Collectivo drivers often behaved and dressed unprofessionally. The new Metrobus BRTS gave importance to the appearance of its drivers, as they are a reflection of the brand and the image of the whole transit system. Metrobus continues to trains its employees to create a welcoming and passenger-friendly service (Carrigan, Arpi & Weber, 2011).

Image 5: Left: LA Metro Orange Line bus driver as an ambassador

Image 6: Right: Collectivo drivers versus Metrobus drivers in Mexico City

Source: Carrigan, Arpi and Weber, 2011

  Janmarg, Ahmedabad

In Ahmedabad, to acclimatise the public with BRTS, the agency built a prototype of the BRTS station one year before Janmarg became operational. The prototype showcased the station designs and educated people on how to use the facilities. This user education policy also provided an opportunity to gather feedback from the public and make necessary design changes before starting the operations. Janmarg also offered free rides to the public for the first 100 days of operations (Carrigan, Arpi & Weber, 2011).

Conclusion

From the Los Angeles case study, through many interventions LA Metro built a strong brand image. Building up a strong brand image is important to communicate the core values of an organisation, inform the people about the services and encourage them to use it often. Marketing strategies can help transit organizations reach their organizational target of increased public awareness, increased use of services and other specific goals. They can be cost-effectively utilized by the public transit organization. However, marketing campaigns should only promote services that already exist, and the transit corporations must be prepared to handle the generated demand.

Read More

Social Equity in Accessing Public Transportation: Case Study of Job Access and Reverse Commute (JARC), USA

Introduction

Transportation planning has always focused on urban mobility, reducing traffic congestion in cities and providing access to major locations (Manaugh, 2014). However, often ignored is the social equity in access to public transportation. With route planning focused on demand forecasting, low-income neighbourhoods and other vulnerable population are often neglected due to budget constraints (Transport for America, 2018). These vulnerable communities rely mostly on public transportation.

In the realm of transportation, social equity refers to providing affordable and equitable access to public transport. The vulnerable population here includes children, students, elderly, handicapped and low-income individuals. Social equity refers to an equitable distribution of impacts; both benefits and cost (Litman, 2018). Equity is more than about providing subsidies and discount tickets. It should encompass the ease of use, connectivity, and accessibility. For example, the use of monthly discount passes is effective only when the bus stops are easier to access.

Low-income and other vulnerable communities should not bear the negative impacts and costs of transportation facilities disproportionately. Rather, public transportation should provide access to jobs and opportunities to these disadvantaged communities (Transport for America, 2018). By providing access to opportunities, transportation investments can be used as a driving force to promote social and economic equity.

To address transportation equity, the vulnerable community should be involved in the planning process and projects prioritised based on their needs. It is equally important to collect the relevant data and measure progress to ensure program effectiveness in reaching beneficiaries and achieving the target goals. This article looks into the case study of JARC to understand the steps taken by FTA to implement social equity through transportation planning.

Case Study: Job Access and Reverse Commute (JARC), USA

The main aim of Job Access and Reverse Commute (JARC) program, administered by the Federal Transit Administration (FTA) (1998 – 2012), was to assist low-income individuals in accessing employment, job training and childcare services. Low-income individuals living in the inner urban cities had difficulty accessing many new entry-level jobs located in the suburban areas. Under JARC, FTA provided grants to transit agencies and other service agencies to fill gaps in transportation services for welfare recipients and other low-income individuals (FTA, 2016). Made available for three years, it administered project funding on a cost-sharing basis. Federal funds covered up to 80 percent of the capital and planning activity and up to 50 percent of operating costs.

Some of the programs implemented under JARC funding were about expanding fixed-route public transit routes, late-night and weekend service, shuttle service, guaranteed ride home service, ridesharing and carpooling and so on (FTA, 2007). The policy incentive while designing the transportation policy encouraged the local, regional and state agencies to collaborate with each other (Sandouvel et al, 2009). Apart from organizing trips, JARC also utilized its funds for information-based and capital investment programs (Figure 1).

Figure 1: JARC Services by Type, 2006 – 2009 (Source: An Evaluation of Job Access and Reverse Commute (JARC) Program Services Provided in 2009)

For example: Camden, New Jersey provides shuttle service that operates three times a day matching the three work shifts at the industrial park. Phoenix, Arizona runs service through western suburb connecting community college with residential area and retails stores. Sanford, Maine provides demand-based van service for getting to work from early morning until late night.

The five major goals identified under JARC programs are as follows (FTA, 2016):

  • Expanding geographic coverage
  • Extending service hours or days
  • Improving system capacity
  • Improving access/connections
  • Improving customer knowledge

The two performance measures used by FTA to evaluate JARC-funded projects are:

  • Number of jobs accessed
  • Number of rides provided (one-way trips)

Response to the Program

For the financial year 2009, 910 projects were funded under the JARC program. Out of these, 44% served in large urban areas, 31% in non-urbanized or rural communities and 25% in small-urbanized areas. JARC supported programs provided 27.3 million one-way trips, made 51.8 million jobs accessible, which included 25.3 million low-wage jobs and 7.7 million jobs were likely reached (Commonwealth Environmental Systems, Inc, 2011).[KI1]

Figure 2: Usage pattern of JARC services (Source: Thakuriah, 2011)

Another survey conducted by researchers at University of Illinois (2009) focused on the mobility and employment outcomes of 573 respondents using any of the surveyed 26 JARC funded transportation service. Compared to non-JARC users, JARC users were less educated and had lower income brackets. About 42% of respondents reported personal incomes of less than $10,000 (~ INR 5,10,000 in 2011), and one in five had not completed high school (Thakuriah, 2011). This indicates that the JARC services effectively served low-income vulnerable communities.

The survey results show that 93.5% of the respondents rated the service as “important or very important” for keeping their job and 34% reported that they wouldn’t be able to commute to and from work if the service was not available. Over one-third users found that transportation services were more affordable with JARC (Thakuriah, 2011).

Figure 2 shows, out of the 23% unemployed, 25% of individuals used the services to access job trainings, about 8% for job seeking and 21% travelled to school (Thakuriah, 2011).

Figure 3: FTA JARC Services and Funding, 2005 – 2009 (Source: An Evaluation of Job Access and Reverse Commute (JARC) Program Services Provided in 2009)

Regarding economic impacts, the study reports a median reduction in generalized travel cost that is estimated to be $3.15 per trip. The median of hourly wages at the primary job also increased by about 14%. At the time of the survey, the median weekly earnings was estimated to have gone up by 15% (Thakuriah, 2011). The graphs and data highlight the fact that JARC programs helped people to access jobs and supported their financial stability. Increased wages could be due to shifting to a higher paying job or increased hours at work. Subsequently, FTA also increased the investment and the coverage of services under JARC over the years (Figure 3).

These results show the potential positive impact of JARC programs on the mobility, employment and economic outcome of its low-income users. However, since the survey does not have an experimental setup for evaluation, the lasting impact of JARC funding is not entirely clear (Sandouvel, Peterson and Hunt, 2009). JARC is one of the multiple possible and creative solutions that agencies can implement to support disadvantaged communities and promote equity in public transportation.

As of 2012, consolidating JARC with the existing Urbanized Area Formula Program and the Formula Grants for Rural Areas Program enabled JARC programs to apply for funding through the urban and rural transit program (GAO, 2017). This was mainly due to changes in JARC’s formula program status wherein separate funding was not available anymore. However, when GAO interviewed few JARC services, two-thirds of them reported to continue providing some form of service.

Conclusion

“Every project’s stance on equity should be assessed by asking the following questions:

  • Does it meet an important need identified by a disadvantaged community?
  • Are the benefits associated with the significant, rather than incidental?
  • Are benefits targeting the low-income residents?
  • Does it avoid substantial harms to the community?

(Marcantonio and Karner, 2016)

The services under JARC were in response to critical issues highlighted and put forth by the community. Upon implementation, there were positive and significant effects on the mobility, employment and economic outcome of the low-income users. A majority of the beneficiaries were less educated and low-income groups. Thus, the benefits of the program was reaching the disadvantaged positively.

Key policy implication of JARC program is to improve public transportation in order to address the social needs. Economic outcomes of the low-income population is positively impacted through accessible and affordable public transportation. During its run, JARC focused on operating rides, in improving the information access and infrastructure capacity of the service region. This combination of capacity building helped many of these JARC funded programs to sustain by themselves, even after the end of its tenure in 2012. However, depending on the intensity of institutional and grassroots support, different cities responded to JARC in different ways (Sandoval, Peterson and Hunt, 2009).  While in some cases, the regions came up with many innovative ideas, whereas some strategies were traditional (Cervero and Tsai, 2003; Sandoval, Peterson and Hunt, 2009). This is also because transportation models are highly relevant to the context of the cities.

Looking at the Indian scenario, high land prices in the core of the city forces economically disadvantaged communities to the fringes of urban development. Therefore, Indian cities are continually experiencing informal settlements in developing or peri-urban areas that lacks infrastructure. This makes opportunities inaccessible, lengthens commutes to their workplaces and degrades the quality of their commute. Being mindful of social equity and incorporating these concepts into the early stages of transportation planning ensures the vulnerable communities to have access to jobs and opportunities. Through equitable access to transportation supports, the promotion of economic stability and social standing of vulnerable communities is necessary.

Featured image source: Thakuriah, 2011

Read More

Modernisation of Operations Management: Role of ITS in Bus Operations at NMMT and the Netherlands

Introduction

Management and operations in transportation systems is defined as an “integrated approach to optimize the performance of the existing infrastructure through implementation of multi-modal, cross-jurisdictional systems, services and projects” (FHWA, 2013). It focuses on the transit vehicle operations directly and how they interact with the transit users. Increasing the performance of an existing infrastructure can improve operational performance, reduce long-term costs and save time (Abou-Senna et al, 2018). The components under operational systems are (ADB and MoUD, 2008; COST, 2011):

  • Route planning
  • Capacity augmentation
  • Ticketing, fare collection and revenue management
  • Operations management (Schedule span, type of services, driving rules, etc.)
  • Customer’s orientation
  • Passenger information
  • Operator’s efficiency
  • Human resource development
  • Quality Management (including safety, security, operator’s training, etc.)

It is important that the transport infrastructure always adapt to the constant growth of the city and its never-ending demand. Information Technology Services (ITS) provides many solutions and models that can help in data collection, forecasting the demand, tracking the vehicles and the passenger movement. All major cities, like Amsterdam, Sydney, Sao Paolo, London, etc. make extensive use of technology in their bus operations and maintenance. They have a centralised command centre and they track the buses through GPS (EMBARQ, 2010).

The benefits of management and operations strategies like these brings forth safer travel, reduced delay in commute, improved reliability, lesser wasted fuel, cleaner air, etc. (FHWA, 2017). Earlier, we have identified that Indian cities have started implementing ITS to help improve its transportation planning and management. In this article, we will study the data management and collection methods in practice at the Navi Mumbai Municipal Transport (NMMT) control centre.

Case Study 1 – Real-time Data Management at NMMT, Navi Mumbai

Currently, NMMT has a bus fleet of 467 buses running on 75 routes. It experiences a daily ridership of approximately 3 lac passengers and generates an approximate daily income of Rs. 37-40 lacs. All the bus lines add up to a total route length of 1895 kms. and have an average length of 26 kms. The average headway is about 15 minutes, the maximum being 65 minutes and a minimum of 7-10 minutes (“NMMT City Bus System”, 2017). NMMT has allocated the buses among 3 depots (Turbhe, Asudgaon and Ghansoli) and 13 bus terminals.

On similar grounds of other major cities mentioned earlier, NMMT has also established a centralised command centre. It tracks the daily movement in the buses to make its operations and maintenance more efficient. They have implemented the real-time data management system through these eight modules:

1.      Automatic Vehicle Locator System (AVLS)

AVLS captures the real-time on-board location and helps create a substantial database where the progress of the bus is stored on a second-to-second basis (Hounsell, Shrestha and Wong, 2012). It receives and stores the bus location and also the bus event information through an on-board GPS. Through this system, the location, speed and the route of the buses can be tracked. From the current location of the buses being tracked and comparing it with an average gives the estimated time to reach a destination. Through the same module, the estimated time for the bus to reach a bus-stop is also calculated.

Fig 1 – The total number of GPS enabled buses distributed among the three depots.

Over 95% of the buses have a GPS installed in them. GPS boxes in the older buses are being installed externally, while the newer buses come with an inbuilt GPS. Based on the movement of the bus, its status (Running, idle, on-trip standby, off-trip standby) gets constantly updated at the control centre, which is useful during the peak hours.

2.      Passenger Information System (PIS)

Deriving the information from AVLS, the control centre constantly tracks the real-time information of the buses.  It calculates the estimated arrival and travel time of the buses based on the historical travel data across different road segments and the time of the day. The commuters can receive this information (estimated arrival and travel time) through the mobile application. The passengers can also get information about the bus drivers and report for incidents.

The passenger movement is counted from the tickets count, through which the peak and off-peak hours are estimated. NMMT uses this information to dispatch the buses and at the same time maintain a reserve stock of them. The reserve stock is useful in case of unprecedented demand or breakdown of a bus.

3.      Control command centre

The control centre constantly records and analyses the real-time information of the buses and passenger’s commute. AVLS and PIS provides a substantial database, which is useful in the maintenance and operations of the buses. Based on the data provided, the control centre is able to:

  • Forecast demand
  • Avoid bus-bunching
  • Check the fare collection and segregating it according to different categories
  • Track the buses for route violations and over-speeding
  • Check for incident reports
  • Interact with the staff and the commuters
  • Maintain the database

Image 2 – The role of control center in real-time data management of NMMT. (Content source – Hounsell Shrestha and Wong, 2012)

4.      Incident Management

The control centre keeps a track of the bus operators and if their buses are following the route or not. They also maintain the incidence reports submitted by the commuters. In cases of any issue noticed by the centre or submitted by the commuter, the control centre resolves it immediately. Operational faults and break-downs are resolved by the respective depots, this:

  • Releases the work-load on a single depot
  • Allows depots to deploy reserve buses effectively
5.      Mobile application

Information like the schedule of the buses, its operators, etc. are available on the mobile application.  Through the mobile application, the commuters are capable of:

  • Checking the nearest bus-stops and routes
  • Checking the available buses and the waiting time
  • Setting a time for notification to leave their place of origin and reach the bus stops.
  • Checking the details of the bus and the bus operators
  • Reporting an incident
6.      Business Intelligence, Financial management system and Enterprise management system

The control centre creates different real-time reports for the general manager, the accounts department and the employees of NMMT. These reports help them to monitor and analyse the performance of the buses and the operating staff.

7.      Scheduling and planning

The scheduling of the buses at the initial stages follows the traditional approach by over-lapping On-site surveys, Activities according to the land-use maps and The number of buses available.

The number of buses on a particular route are increased or reduced according to the demand of the commuters. This demand is tracked online through the count of the tickets.

8.      Automatic Fare Collection System

There are many ways to register a trips made by the commuters; through on-board ticketing, monthly passes and through a mobile application. All of these are recorded and maintained to analyse the daily ridership in the buses. Through which, the peak and off-peak hours are estimated. The same online system is also used to create stock correction reports.

Case Study 2 – Network of Bus Corridors in the Netherlands

Any transportation system is based on potential user’s demand. This demand forms the technical foundations for designing the system, planning operations and the financial feasibility (EMBARQ, 2010). Route planning of any public transport should always be in response to the context of the neighborhood and in consultation with the local stakeholders. It should be laid out to serve the maximum commuters in the most efficient way.

Following a similar ideology, the development or improvement of the public transport in the Netherlands is done gradually (from a regular bus to a dedicated infrastructure) on the basis of the integral vision of the change in transport requirements (number of passengers) and the development of the locations (with the increase in number of residents and jobs) (Public transport in the Netherlands, 2016).

This data to document the necessity to develop a route is collected through many ITS models. An estimated amount of €170 million is budgeted for 75 projects in total; for data collection models such as cluster travel information, Multi-Modal information, dynamic traffic management, etc. (Ministry of Infrastructure and Environment, The Netherlands, 2012). The data is processed into travel information, for both unimodal and multimodal mode, through apps such as 9292 (public transportation) and ANWB (Dutch Automobile Club). The travel information is useful for improved accessibility and traffic flows. The appropriate use of ITS architecture leads to co-ordinated and standardised development of a cohesive framework of technical and information structures (Ministry of Infrastructure and Environment, The Netherlands, 2012).

The integration of different services is also one of the key features of Dutch public transport. It follows a hierarchy of fast (peak hour), local and community, and demand responsive services. The bus operators setup their time-tables around a ‘transfer-scheme’ to be able to find a convenient way to connect to a metro/rail. The ticketing and fare system is also integrated. Use of Strippenkaart, sterabonnement or ov-chipkaart (tickets and pre-paid cards) are capable to allow the commuters to travel using the same fare and tickets.

Take-Aways

The real-time data management system implemented in NMMT is still young and constantly upgrading. However, a positive impact in the operations can be seen. Since the implementation of this system, there has been a significant reduction in the incident reports (Fig 2). The statistics suggest that cases of over-speeding of buses is almost negligible now.

Fig 2 – Percentage reduction in incidence reports (Content source – NMMT)

Through constant tracking of the buses and implementation of this system, NMMT is now capable of:

  • Monitoring the services of the buses
  • Managing operational maintenance and reports
  • Real-time incidence reporting and resolving
  • Retrieving performance data for post-process applications
  • Reducing the manual data collection

Efficient data collection, availability of travel information and integration among different operators are key for developing an efficient operational model. A coherent and integrated route plan ensures user-friendliness and higher usage of the bus services. It has a direct influence on the passenger demand, reduced travel time and the operating costs; hence, also on the revenues (ADB and MoUD, 2008). Indian ULBs have also started developing similar models, however, the process of implementation is rather slower and complex. With an increasing use of ITS in bus operations, open data collection and disseminating travel information is getting easier and more efficient.

Read More

Low Carbon Emission Bus Fleets: Case Study of Shenzhen, China

Introduction

In the recent years, climate change and increasing pollution levels in urban areas have brought our attention to the detrimental impact of the fossil fuel based transportation sector on the environment. In 2010, the transportation sector alone contributed to 14% of 2010 global greenhouse gas (GHG) emissions. 95% of the global transportation energy in 2010 came from fossil fuels that are highly polluting (EPA, 2018). Considerable reduction in the GHG emissions can be achieved and urban air quality improved by shifting to low-emission vehicles that run on clean fuel. Low emission vehicles use alternative fuels such as biodiesel, natural gas, hydrogen (fuel cells), ethanol, propane, compressed biogas, biomethane, electricity and so on. Electric vehicles are the cleanest amongst these, with zero tailpipe emissions during operations. Every zero-emission pure electric bus eliminates about 1,690 tons of CO2 over its lifespan of 12 years, which is similar to removing 27 cars off the road (US Department of Transportation, 2016). This article takes the case study of Shenzhen, China to understand the initiatives taken by their authorities to develop the largest electric bus fleet in the world.

Case Study of Shenzhen, China: World’s Largest Electric Bus Fleets

Located in the Pearl Delta region, the city of Shenzhen is a major financial, industrial and technological center in Guangdong Province, China. It has developed rapidly due to its special economic zone (SEZ) status and its proximity to Hong Kong. As of 2015, Shenzhen is home to about 11.6 million residents and covers an area of 1,991.64 square kilometres (Shenzhen Bureau of Statistics, 2016).

In Shenzhen, 0.5 percent of the city’s total vehicle fleet is diesel buses, but they accounted for 20 percent of the city’s transport emissions (Ying, 2017). Switching to electric vehicles was one of the solutions to improve air quality substantially in the industrial hub. The city of Shenzhen began introducing electric buses (e-buses) in 2009 and since then it has pushed for 100% electrification of its bus fleets. As of 2018, Shenzhen has electrified its entire fleet of 16,359 buses (Lu, Xue & Zhou, 2018).

Cost Management

Even with the current advancements in technology, the upfront cost of an e-bus is still higher than that of a diesel bus, and public transportation organizations had to find ways to deal with the massive investment deficit. The authorities in Shenzhen took initiatives at many levels to be able to implement 100% electrification of their buses. It was made possible through:

Subsidies

Capital investment in the form of national and local subsidies made it possible to electrify 16,359 buses in Shenzhen. For example, a 12-meter e-bus in Shenzhen received $150,000 in government subsidy covering more than half of the vehicle’s price (Shenzhen Municipal Development and Reform Commission, 2016). Apart from the e-buses, the government has also promoted clean energy vehicles by:

  • Providing financial subsidies for using charging facilities for other private electric vehicles
  • On the purchase of electric taxis and passenger cars within their city limits.

Cost of the Batteries

According to the bus operators, the high upfront cost of e-bus (2 to 4 times of a traditional diesel bus) is one of the major hindrances in adapting to this technology. (Shenzhen Urban Transport Planning & Design Institute, 2017). The batteries attribute a majority of the higher cost of e-buses. With growing technology and economies of scale, cost of the battery for electric vehicles have steadily declined over the years (Figure 1) (Bloomberg New Energy Finance, 2018). Figure 2 shows that for a longer route the Total Cost of Ownership (TCO) of e-buses is lower than that of diesel buses (Bloomberg New Energy Finance, 2018). TCO includes the upfront cost, operating and maintenance cost.

Figure 1: Lithium-ion battery’s price survey – volume weighted average (Source: Bloomberg New Energy Finance)

Figure 2: TCO comparison for e-buses and diesel buses with different annual distance travelled (Source: Bloomberg New Energy Finance)

Defining the Role of the Stakeholders

A change of battery is required once during the lifetime of the bus and costs almost half the price of the buses. Shenzhen bus operators worked out a procurement deal with the manufacturers to provide a lifetime warranty on vehicles and  batteries. Manufactures providing warranty for the vehicles and batteries reduced a significant part
of the maintenance cost for the bus operators (Lu, Xue & Zhou, 2018). This distributed the financial risks among the major stakeholders. Some of the major stakeholders include:

  • Central and local government
  • E-bus operators (Shenzhen Bus Group Ltd)
  • E-bus manufacturers (Build Your Dreams)
  • Power supplier and distributor (Shenzhen Power Supply Bureau Ltd)
  • Transmission system operator (China Southern Grid Corporation)
  • Charging infrastructure operator (Potevio Ltd)

Figure 3: Illustration of major players and their interactive role (Source: C40 Cities, 2016)

Some operators also leased the buses and charging facilities instead of buying them upfront. Outsourcing charging and maintenance facilities turned-up to be profitable. Through such initiatives and subsidies, Shenzhen was able to
adapt to electric buses within a span of 6 years (Shenzhen Urban Transport Planning & Design Institute, 2017).

Local Support

Shenzhen has a strong local technical and industrial support in the form of home-grown high-tech companies like Build Your Dreams (BYD). Over the last three years, through technological innovation and mass production, BYD has managed to bring down their battery costs by half. These have a longer lifetime, faster charging time and better safety features. BYD, central and city government officials have worked together to achieve Shenzhen’s sustainable urban development goals through corporate innovation and government policy (Chen & Ogan, 2016).

Optimising Operations

Charging and operations were optimized by procuring e-buses that can support a full day of operation (around 250kms) in a five-hour charge (Lu, Xue & Zhou, 2018). Apart from this, bus routes furnish sufficient battery charging infrastructure to ensure undisrupted service. Currently, the ratio of charging outlets to the number of e-buses in Shenzhen is 1:3 (Shenzhen Urban Transport Planning & Design Institute, 2017). E-buses are fully charged overnight and supplemental recharge is done during off-peak hours when the electricity prices are lower. To promote the use of electric vehicles within the city, these charging facilities are also available for private cars and taxis at a subsidized price.

Figure 4: Electric bus adoption in Shenzhen, China (Source: Shenzhen Urban Transport Planning & Design Institute Co., Ltd)

Benefits Achieved

The environmental benefits of 100% electrification of the city bus fleet have been highly positive. In the year 2015, Shenzhen saved standard fuel of 84,000 tons and reduced 150,000 tons of GHG emissions (C40, 2018). The estimate suggests that the average total mileage of one e-bus will be approximately 174.4 kms with reductions of (Ying, 2017):

  • 48.6 tons of nitrogen oxides
  • 62.1 tons of non-methane hydrocarbons
  • 1.2 tons of particulate matter

By implementing 100% e-buses fleet, the city saves 345,000 tons of fossil fuel per year. Apart from reducing air pollution, e-buses have other benefits (Ying, 2017):

  • They are more fuel-efficient
  • The cost of fuel is lower
  • The engine does not produce any noise

Take-aways

Major cities, like London, Amsterdam, France, etc. have started switching to electric buses in their own capacities. The case of Shenzhen however, is a lot of different since it is the first city which has managed to convert its entire fleet to electric buses. From this case study, major takeaway is that it is possible to convert traditional diesel bus fleets to e-buses by:

  • Encouraging electric vehicles through subsidies
  • Having strong technical assistance from local manufacturing industry (like electric vehicles and batteries)
  • Leasing bus and charging infrastructure
  • Getting buses and battery warranty from the manufacturers
  • Outsourcing maintenance and operation services

The city of Shenzhen is working to reduce pollution and improve air quality with the use of clean fuel in their transportation sector. From the current state, the city of Shenzhen has now turned its focus to electrify their taxis by 2020 (Sisson, 2018). However, this case study also shows that in the current scenario, only large cities that have the financial capacity to provide subsidies can attempt for electrification of their public buses.

Featured image source: Getty Images

Read More

Dockless Bike Sharing in Palava

A good public transport system supported by a bicycle sharing program for last mile connectivity can serve as a complete solution for solving urban transport issues in the cities. However, the implementation of a well-functioning bicycle sharing system has always been a challenge for the city managers. From the perspective of the city there are three major hurdles. First, high capital investment combined with the ongoing operations and maintenance costs[i] which barely are covered with subscription fees. Second, scarcity of land in the city to build enough parking stations at important nodes. And third, is efficient re-balancing of cycles according to the usage pattern restricting the availability of cycles[ii].

The advent of dock less public cycle sharing system in China reinvigorated the use of shared cycles as a solution for green commute in the cities. Traditionally, the bicycle sharing models relied on a docking system at the parking stations. The docks were capital intensive and constrained the number of cycles that could be parked at a particular station. The model also occupied considerable area at prime locations in the land scarce cities. On the other hand, the new dock less system reduces the capital requirements for the docks and also removes the necessity of defined land parcels. The cycles in the new system are fitted with IoT based GPS locks, which facilitates picking and dropping of cycles at any location. GPS based mobile applications with online payment integration have eased the process of cycle discovery and payments. The low price and ease of usability have facilitated the cycle sharing system to scale extensively. The long term attractive business proposition in the dock less system has also attracted venture capital for initial investments in capacity and innovation. The two large Chinese unicorns Ofo[iii] and Mobikes have managed to get investments of over $3Bn in just three years.

But the explosion of the dock less cycle system came with a downside too. The model seen as a boon to transit system became a menace for the streets[iv]. More than 2 million bikes are available for sharing in Beijing alone, clogging the streets and footpaths[v]. To manage the uncontrolled growth, cities have resorted to regulations.  Seattle was one of the first cities that placed regulations and fines on the cycle sharing companies[vi]. In India, a similar system is yet to take off on a major scale. However, Palava is one of the first cities in India which has managed to implement a dock less bicycle sharing model successfully with minimal regulation through technology. This has been achieved by accommodating mixed mobility in the urban design of Palava combined with IoT innovations by partner Zoomcar.

Case study: PEDL in Palava

Taking a few cues from evolving megacities like Beijing in China and few other European cities, Palava has designed its own system of dock-less cycle sharing that might yet become a trendsetter for not only Mumbai, but other parts of India as well.

Figure 1: PEDL cycles in Palava

Palava is a privately built smart city by Lodha group, which can be seen as a blue print for the future Greenfield urban developments. The city is designed on the ‘concept of 5/10/15 minute walk’ where daily commute for reasons such as shopping, school, work place are at a walking distance from every residence. 80% of resident’s daily trips can be met by walking or bicycling in Palava.

Implementation

Palava adopted a model for locating cycle stations at every 50 meters from a residence. All the main aggregation points of the city such as shopping mall/arcade, club houses, schools, and city manager’s office were covered. The stations were clearly demarcated on the ground and were geo-fenced. At the launch 30 stations were identified in the city with 200 cycles. Geo-fencing facilitated parking of cycles in the allotted areas and prevented a situation of clutter in the city.

Figure 2: Geo-fenced cycle station in Palava

The campaign for launch of cycle sharing was widely circulated through social media such as Facebook posts, watsapp messages, emails and SMS. The cause of cycling was taken up by Palava cycling club and other active social groups within Palava. The well-connected and closely knit communities in Palava were helpful in early adoption of the system post the launch.

Usage and Response

The initial response from the citizens for the service was overwhelming with an average ridership of 1500 trips per day. The novelty factor of using the service attracted many users to the platform. However, with time the usage saw a dip and eventually stabilized at 1000 trips per day. Out of the 30 stations, 8 stations contributed to 60% of the trips. These were mostly popular destinations like shopping arcades, club houses etc. The usage varied during the span of the day, the maximum ridership was in two peaks in the morning and evening. These peaks corresponded with the work commute trips and as well leisure trips for fitness.

Demographic Analysis

The promotional price at the launch was set at INR 1 for 30 minutes hence there wasn’t much difference in the income levels of the users. There was a stark difference in the gender’s usage; only 4% of the females used the system compared to 11% for male. In terms of age structure distribution, the maximum users were in the age bracket of 22 to 35, which is also the largest cohort in Palava.

Figure 3: Weekday and weekend distribution

Learnings

  • The parking for dock less system needs to be controlled using system such as geo-fencing. This ensures that the cycles are parked in certain spaces allotted to them and are not cluttered all over the city. The initial geo-fenced station’s radius can be kept higher and then it can be slowly reduced as the people start getting habitual.
  • Rebalancing the number of bicycles is very critical for smooth functioning and uptake of the cycle system. The usage pattern for the program at every station level has to be understood and should be subsequently programmed for rebalancing. If proper rebalancing is not done, then citizens will not be able to get cycles at the right place and at the right time. Hence, the whole objective of the sharing the resource might fail.

Figure 4: 24 Hour distribution of number of trips

  • Since the mobile application has integrated payment mechanisms, it is easy to create an incentive system. Users could be incentivised with low rates during non-peak hours. Even extra credits can be given for rebalancing (that is taking cycles from unused stations to the highly used ones).
  • Apart from the benefits of commute and health, the data collected from the trips made by the commuters gives valuable insights to urban planners and policy makers. The duration and length of the trips, origin-destination studies, time variance and demographics particularly are very useful for overall transport planning in the city[i].

 

By – Vaibhav Chugh, AGM (Strategy), Lodha Group

Read More

Kirkpatrick Model – Four Level Training Evaluation Model

Kirkpatrick model is one of the highly recognized and widely used training evaluation model. It was developed by Dr. Donald L Kirkpatrick (1924-2014).  It is one of the most effective models to analyse and evaluate the results of educational programs.  It can objectively analyse the impact and efficacy of training. As it proceeds, the evaluation process gets more difficult and time consuming. However, the higher level assessments also generates information that is more critical and valuable.

The four levels of Kirkpatrick model

By analysing each of these four levels, it is easier for a trainer to evaluate an effectiveness of training and find the ways to improve the future trainings. The four levels of the evaluation model are as follows:

  1. Reaction evaluation – Training participant’s opinion about the training and the trainer – The personal thoughts and the feelings are captured quantitatively through responses in a questionnaire (typically termed as ‘smile sheets’ or ‘happy sheets’). Questionnaire analyses the training content, methodology, facilities and the course content. Learners also respond to their first reaction to learning experience.
  2. Learning evaluation – The extent of learning after the training – It measures the personal development of the trainees by analyzing the increase in knowledge, the acquired skills or enhanced intellectual capabilities.This is assessed before and after (pre-test & post-test) the training so as to ascertain the scale at which learner has gained the knowledge. The evaluation involves observation and analysis of the voice, behaviour and text of the trainee. The measurement at this level gets more difficult and laborious as the participant’s evaluation moves from learner satisfaction to learner’s knowledge advancement.
  3. Behavioral change evaluation – The extent to which the trainees applied the acquired knowledge and changed their behavior. This change can be immediate or several months after the training depending on the situations. Behavior evaluation analyses the transfer of acquired knowledge from the training session to the work place. Here, the primary tool for evaluation is predominantly the observation. Apart from the observation, a combination of questionnaires and 360 Degree feedbacks are also used. It is rather difficult to predict the change in behavior and hence, the evaluation process gets even more difficult. It requires important decisions in terms of when and how the trainees should be evaluated.
  4. Result evaluation – To assess training in terms of business results. It is measured by assessing the change in key performance indicators of business which involves, achievement of standards and accreditations, number of complaints, profit and loss statements, business volumes, etc.  However, since all these factors are also affected by several other external factors it gets difficult to quantify the training impact on business results. This stage helps in identifying the ROI (Return on Investments) of the training.

In the context of trainings through UJJWAL at CIDCO, the training cell team captures the relevant information to evaluate the reaction of the trainees, which is the first level of the Kirkpatrick model. A feedback form that captures the reactions of the trainees is filled by them immediately after the training is over. 85-90% of the submitted participant’s feedbacks have already assessed the institute vis a vis faculty or the Subject Matter Expert (SME), relevance of the course, course content, training methods and other faculties. NIUA-CIDCO Smart city lab also incorporates the second level of the Kirkpatrick model. However, currently this is only being done for high end courses. At this stage, participants are asked to submit a brief on their learning in a pdf or doc version, so as to qualitatively assess the enhanced knowledge of the participant.

It is strongly believed that many of the participants in CIDCO have started implementing the knowledge gained during the training in their professional and personal lives. This can be evaluated through methods of psychometric assessments or 360 degree assessments in the third stage of this model. However, the tools to quantify the change in the application of the knowledge are still in development stages and can be assessed only in a larger group of participants over a period of 12-18 months. As the trainings gets more amenable in the coming months, UJJWAL’s training cell aims to take its evaluation process to the next stages of Kirkpatrick model. By doing so, it intends to measure a system wide impact measurable in terms of the people, the processes and the business of CIDCO.

Read More

Engaging Through Online Platforms

Introduction

Throughout the world for many years, local bodies have been involved in deliberation of local issues, decision making within their capacities and choosing their leaders. The idea of citizen engagement in public affairs has been long prevalent (GCPSE, 2016). Similarly, the idea that computers and digital technologies can help us improve city in diverse ways, isn’t new either (Bollier, 2016). However, in the recent years there has been an increase in the number of citizen engagement activities and a shift is taking place from the top-down governance to a more horizontal process (Garrigues, 2017). With the changing trend, the policy makers have started looking for active citizen feedbacks to have a better sense of people’s priorities and to decide the need & shape of the public policy (Bollier, 2016; IPAT, 2015). The National Smart Cities Mission also identifies the importance of citizen engagement in the formation of a policy and actively works in applying it at different levels. In our previous newsletters we have discussed the strategies of citizen engagement taken up by different cities and a possible framework of process that can be implemented.  This article reflects on different case-studies around the world that initiated citizen engagement models on an online interface. It also reflects on their procedure and how they managed to derive an order in a situation of complexity.

Out of the SCPs of the 20 lighthouse cities there are many cities that understands the importance of using online platforms as an effective way of engaging citizens. Jaipur has come up with an online grievance redressal system app where the citizens can register any issues in their area. Surat has come up with many initiatives at different levels to ensure a comprehensive approach towards citizen engagement. Out of the many objectives, they have also developed an online citizen engagement platform for getting citizen’s feedback in decision making. Pune has created an ecosystem of around 400 partners to support the growing entrepreneurial culture and at the same time integrate the local stakeholders. Ahmedabad involves different groups of people, societies, working class to practice citizen consultation exercises for their inclusion.  There are many more examples to share.

Framework of Operations

Any citizen engagement process broadly involves three actors (GCPSE, 2016). They can then be further categorized according to their specialization:

  1. Decision makers – The politicians who aggregate the preferences of the citizens and facilitates the citizen’s expectations by deploying the resources and governance.
  2. Mediators – The public officials who deliver the public services to the citizens and implement the strategic direction of the policy decided by the politicians.
  3. Citizens – In a sort of ‘social contract’ with the politicians; gives the authority to the politicians and expects good public services in return. This also includes the local businesses and entrepreneurs.

The concept of citizen engagement requires an active dialogue between the citizens and the decision makers; it is not entirely similar to citizen participation (Garrigues, 2017). In citizen engagement, cities (or social systems) directly involve the citizens in the decision making process, it is a more formal structure that is organized by the public officials or the government. They do it by providing tools to consult and access public information, discuss with the elected representatives and monitor the implementations (Garrigues, 2017). Citizen engagement creates a sense of citizenship and educates the public in many ways (IPAT, 2015).  For an effective engagement process the public officials play an important role in mediating the preferences of the citizens and developing a network among the citizens with common interests. It is also very important the development model and the whole process is transparent. This is where an online platform can be of many utilities. Through the different case studies around Europe, we can develop an understanding on how they work.

INSIGHTS FROM THE CASE-STUDIES IN EUROPE

1)      ZO!city

The model was implemented in Amstel III which is the south-eastern neighborhood of Amsterdam. Post-2008 financial crisis, the area once had 25-30% vacant spaces (Beer, 2014). The existing stakeholders had limited contact with each other and cohesively lacked a sense of ownership.

The fragmented stakeholders were the key strength of the neighborhood. However, to setup a collaboration among them was the main challenge. The implementation of the model, initiated by Saskia Beer, was a step-by-step process:

  1. Analyse the neighborhood and identify the main strategic points where smaller interventions could’ve made a lot of difference.
  2. Informal meetings with the local stakeholders were held, which included real estate owners, companies, business associations, community organizations, etc. to understand the priorities, their willingness and their capacities to invest in the development model.
  3. Using metaphorical and non-technical language, the mediators created a manifesto that triggered the stakeholders to envision their own ideas and make the planning process seem more accessible to the citizens and the stakeholders.

Fig 1 – The three interconnected pillars of the development model

This was done by deliberately using a ‘light-hearted and positive’ campaign over a rather serious vision (Beer, 2014). The development model works on three interconnected pillars. The municipality simultaneously had its own objectives for the development model.

Saskia Beer initiated ‘glamourmanifest’ which follows the model of co-operation and co-creation with a collective instrument of interventions and investments. An adaptive practice has been implemented to adjust to the changes and the opportunities that come along the way (Beer, 2014). By collecting the ideas and the demands of the users an urban vision was then synthesized. The initiatives and the desires of the stakeholders were located on a map and overlapped. The ‘high energy zones’ were identified where a lot of ideas and stakeholders overlapped.

It was realized that to establish an effective network of co-operation between the stakeholders it was very important that the information regarding the various initiatives is provided to them at ease. A sense of transparency and availability of information is always required, to accommodate this need an online platform was launched and ‘glamourmanifest’ changed its name to ‘ZO!city’.

Fig 2 – The online interface of ZO!city

Fig 3 – On clicking the pins, the description of the ideas shows up

Anybody using the website has the liberty to suggest an initiative which is then opened for public voting and sources of funding. The initiatives are geo-located on a map which are also classified and colour-coded on the basis of its functionality. The ideas are then openly scrutinized by the other users and is up-voted if it develops similar interests. When the project gathers enough response, it is then made open for public funding. By the use of the database and understanding the priorities of the stakeholders, the companies and their capital has started to come together. Most of the initiatives are proposed through the interface. In many cases, the investments are done by the private stakeholders, this reduces the dependency on the municipality and generates a state of financial self-reliability. The progress of the project can be tracked and users can directly give their feedbacks. As on 2017, the initiatives has kick-started the following projects:

  • Parking space sharing by ParkU
  • Electric bike sharing by Urbee
  • Ubuntu stadtsuin (city garden) by Empowerment co-operative Amsterdam (ECA)
  • E-car charging stations by Gemeente (municipality), Amsterdam
  • Co-working space by Carteblanche (Status-completed)

2)      Madame Mayor, I have an idea!

In Paris, a new participatory budgeting scheme was piloted by the mayor Anne Hidalgo in 2014. Unlike ZO!city, the ideas here were not crowd-sourced, instead the city administration proposed ideas which were then brought upon to the citizens for discussions and voting. In the initial years, the process concentrated on encouraging the citizens to initiate a discussion for the proposals.

After a few years of initiations by the city authority, the participatory budgeting process is now online and fully active (Simon, Bass, Boelman & Mulgan, 2017). The citizens of Paris can now directly propose an initiative by themselves. Currently, the process has five phases distributed   (Simon, Bass, Boelman & Mulgan, 2017):

  1. In January and February, the proposals are made online which are supported by many neighborhood workshops.
  2. From March to May, a co-creation process takes place which brings the representatives of similar proposals together.
  3. Over the next few months, the ideas are shared online for public review. Selected by an election committee, these ideas meet the minimum criteria such as, public benefit, technical feasibility, the financial feasibility, etc. During this period, an elected committee assists the people in promoting and campaigning their idea.
  4. In September, the citizens are then allowed to vote for the most desired proposals.
  5. By December, the successful ideas are selected. The implementation and the budget is allocated in the following year.

The progress of the projects can be then tracked through various means such as on online platform, geo-located and overlapped on google maps and by infographics created by the teams.

Since the year of inception, the project has seen substantial growth. Currently, it is considered as one of the biggest citizen engagement programs in practice (Simon, Bass, Boelman & Mulgan, 2017). In 2014, the project received around 41000 votes for various proposals, the number raised to 67000 votes in the next year and then 160000 in 2016. The number of projects selected for implementation also increased from 9 to 219. The transparency of the process, political support and the continuous citizen engagement are the main reasons for the success of this initiative.

Fig 4 – The comparison of the selected projects and the participation of the citizens over the years.

Although, the process of these models are highly inclusive to the context of the neighbourhoods or cities, but still, similar projects in their own capacities have started emerging all over the world. For example, Madrid has ‘Decide Madrid’, which tracks proposals, debates, participatory budgeting and sectoral processes. Jakarta has initiated its share of citizen engagement from ‘Qlue’ which has different interfaces for different activities. Reykjavik, Finland has ‘Better Reykjavik’ which works on similar grounds.

Key Take-aways

In the context of a neighborhood, the number of the stakeholders present are never specific and to define the style of interaction among them is rather complex. Even if the decision-making process might be spontaneous and time consuming, the objectives can be clearly laid out and a definite process can be put in place. It is equally important to identify the stakeholders and understand their needs and ideas for urban transformation. According to their desires and the ambitions of the stakeholders, a proper network between them should be created. An online interface comes of many uses, a database of the existing stakeholders and their interests can be created. The database can also be created on the basis of the proposals and the feedbacks of the users, at the same time it can also work as a source of information for them. The whole development model is highly transparent and allows the users to track the progress of the projects they are interested in. A possible framework can be summarized in the figure – 7.

Fig 5 – A summary of the possible framework of using an online interface for better citizen participation. (Source – glamourmanifest)

Although, the SCP of Indian cities has considered many initiatives for citizen engagement, for example, mygov has forum which actively asks the citizens for feedback and discussions. However, a similar model is hard to find. There are many takeaways from the above case-studies that the Indian cities can use to develop an effective citizen engagement process. Implementing a similar model can help the decision makers in foreseeing a long-term urban synthesis and develop a sense of trust among the stakeholders.

Indian cities has always had diversified actors with multiple interests. Identifying similar interests and developing a network among them can be a complex challenge and also an opportunity. An online interface can help the mediators and the decision makers to derive a sense of order in the complex network of interests and develop an incremental order in the development process.

Read More

Participatory Budgeting

Introduction

Participatory Budgeting is a democratic process in which community members directly decide how to spend part of a public budget. It helps make budget decisions clear and accessible. It gives real power to people who have never before been involved in the political process. (New York City Council, n.d.).

“How do you spend $1 million of the city’s money…?” The pamphlets used in New York’s pilot program on Participatory Budgeting (PBNYC) ask this question to the citizens.

The practice of Participatory Budgeting originated in Porto Alegre, Brazil in 1989. It attracts almost 50,000 citizens every year to deliberate on the utilisation of approximately 20% of city’s monetary resource (Shah, 2007). Its positive impact is a noticeable improvement in the accessibility and quality of various public welfare amenities in those municipalities that have adopted it. The participation and influence of people belonging to low-income groups in the budget allocation process are proof of their empowerment (Bhatnagar, Rathore, Torres, & Kanungo). Numerous governments, NGOs, institutional bodies, social movements and political parties have adopted participatory budgeting to bring changes in public policy and implementation processes.

Participatory Budgeting in India

Since the amendment of 74th Constitutional Act, the interaction of local civic bodies with the decision-making bodies of government ameliorated. Along with this, the sectors of economics, planning, justice and budgeting became transparent to the public and they eventually became crucial stakeholders. A few notable Participatory Budgeting initiatives in India are in Bangalore, Mysore, Pune and Kochi, where formal institutional methods were established which made sure that citizens were also part of decision-making (Shetty, 2015). Bangalore was the first city to implement participatory budgeting and the campaign resulted in citizen’s participation in budget allocation in over 20% of wards in the city (Keruwala, 2013).

Case of Pune

Participatory Budgeting was launched in Pune in 2006 under the then commissioner of Pune Municipal Corporation. Pune Municipal Corporation consists of four zones with 15 administrative wards. Each administrative ward contains 4 to 6 prabhags. Each prabhag (composed of two electoral wards) was allocated a budget of 50 lacs and could execute any number of projects with a maximum cost of Rs. 5 lac per project. For 76 prabhags in PMC, a total of Rs. 38 crore was allocated through participatory budgeting (Keruwala, 2013).

The process begins when Pune municipal Corporation (PMC) invites suggestions from citizens at the respective ward offices. These inputs vary from roads, electricity, buildings to slum improvement and water supply and drainage. Suggestions by the citizens are compiled at the ward office and submitted to prabhag samiti, which in turn sends the approved suggestions for accounts scrutiny to produce a final list of projects to be implemented in PMC region.

Decentralised Planning in Kerala – An Experiment through Ninth Five-Year Plan

In India’s ninth five-year plan, Government of Kerala established a decentralisation plan, which was an outcome of People’s Plan Campaign – an experimental approach to reformations in local planning. Participatory budgeting was first launched in 1996 and covered the entire state including 991 rural villages, 152 block panchayats, 53 municipalities, 14 districts and 5 corporations that represented different levels of administrative bodies (Wilhelmy, 2013).

Following this, in the period 1996 to 2001, the entire state devolved approximately 40% of state revenue into the projects chosen by 65% of the 3 million beneficiary citizens and eventually this model became a part of state planning, now popularly known as Kerala Development Plan (Wilhelmy, 2013). With an objective to ensure that priority projects meet the needs of beneficiary citizens, the model aims to establish civic engagements exercises. Participatory planning in Kerala focuses on local economic development, social justice and various public services with excellence (George & Balan, People’s Participation in Development Planning in Kerala, 2011).

Kerala’s process evolved into a dynamic model with two key features of the campaign – resourceful and trained administration and the extent of involvement of people elected delegates. The model created an inclusive platform of citizens supported by 373 state-level trainers, almost 10,500 trained provincial-level resource persons and 50,000 trained local activists (including 4,000 retired administrators) (Wilhelmy, 2013). The delegates elected by the people were involved in the budgeting process at every phase with a say in raising demands, prioritising projects and development plans (Wilhelmy, 2013).

Stages of Participatory Planning

The procedure of participatory budgeting comprises of six stages:

  • A range of local assemblies/grama sabhas are conducted.
  • Conducting development seminars, which facilitates discussions between politicians, experts and groups of citizens.
  • Preparation of report from the data collected from development seminars.
  • Drafting of project proposals with technical requirements and budget planning details by the ‘task force’ created by the development seminar.
  • Approval of the projects and budget by District Planning Committees.
  • Implementation, monitoring and evaluation of the approved projects.

Public Participation

All stages of participatory planning ensure involvement of the stakeholders. The local government, to execute the initiatives and to promote maximum participation of the public, forms certain Working Groups (Figure 22) that are mandatory in every local body (George & Balan, People’s Participation in Development Planning in Kerala, 2011). These groups include the sectors shown in the diagram. The Working Groups, with an elected head perform effectively to guarantee participation of all marginalised societal groups. At the second stage of participatory planning – Development Seminar, the proposal projects put forward by the Working Group are presented and are subjected to public suggestions and improvements (George & Balan, People’s Participation in Development Planning in Kerala, 2011).

Sectors of Working Group

For maximum participation of all the stakeholders, the respective local bodies ensure communication at all stages from conceptualisation to implementation. Right to Information Act plays a major role in the framework as it facilitates access for public to the processes and documents involved. Kerala Institute of Local Administration (KILA) (George & Balan, People’s Participation in Development Planning in Kerala, 2011) conducts training programmes for members of Ward Sabha/Ward Committee and this capacity building initiative ensures that decision-making process is all-inclusive.

Read More